Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients

Ferruccio Colombini; Daniele del Santo; Tamotu Kinoshita

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)

  • Volume: 1, Issue: 2, page 327-358
  • ISSN: 0391-173X

Abstract

top
We prove that the Cauchy problem for a class of hyperbolic equations with non-Lipschitz coefficients is well-posed in 𝒞 and in Gevrey spaces. Some counter examples are given showing the sharpness of these results.

How to cite

top

Colombini, Ferruccio, del Santo, Daniele, and Kinoshita, Tamotu. "Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.2 (2002): 327-358. <http://eudml.org/doc/84473>.

@article{Colombini2002,
abstract = {We prove that the Cauchy problem for a class of hyperbolic equations with non-Lipschitz coefficients is well-posed in $\{\mathcal \{C\}\}^\infty $ and in Gevrey spaces. Some counter examples are given showing the sharpness of these results.},
author = {Colombini, Ferruccio, del Santo, Daniele, Kinoshita, Tamotu},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {strict hyperbolicity},
language = {eng},
number = {2},
pages = {327-358},
publisher = {Scuola normale superiore},
title = {Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients},
url = {http://eudml.org/doc/84473},
volume = {1},
year = {2002},
}

TY - JOUR
AU - Colombini, Ferruccio
AU - del Santo, Daniele
AU - Kinoshita, Tamotu
TI - Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 2
SP - 327
EP - 358
AB - We prove that the Cauchy problem for a class of hyperbolic equations with non-Lipschitz coefficients is well-posed in ${\mathcal {C}}^\infty $ and in Gevrey spaces. Some counter examples are given showing the sharpness of these results.
LA - eng
KW - strict hyperbolicity
UR - http://eudml.org/doc/84473
ER -

References

top
  1. [1] F. Colombini – E. De Giorgi – S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temp, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (1979), 511-559. Zbl0417.35049MR553796
  2. [2] F. Colombini – D. Del Santo – T. Kinoshita, On the Cauchy problem for hyperbolic operators with non-regular coefficients, to appear in Proceedings of the Conference “À la mémoire de Jean Leray” Karlskrona 2000, M. de Gosson – J. Vaillant (eds.), Kluwer, New York. Zbl1036.35122MR2051477
  3. [3] F. Colombini – N. Lerner, Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. Zbl0840.35067MR1324638
  4. [4] F. Colombini – S. Spagnolo, Some examples of hyperbolic equations without local solvability, Ann. Sci. École Norm. Sup. (4) 22 (1989), 109-125. Zbl0702.35146MR985857
  5. [5] L. Hörmander, “Linear Partial Differential Operators”, Springer-Verlag, Berlin, 1963. Zbl0108.09301
  6. [6] E. Jannelli, Regularly hyperbolic systems and Gevrey classes, Ann. Mat. Pura Appl. 140 (1985), 133-145. Zbl0583.35074MR807634
  7. [7] T. Nishitani, Sur les équations hyperboliques à coefficients höldériens en t et de classe de Gevrey en x , Bull. Sci. Math. 107 (1983), 113-138. Zbl0536.35042MR704720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.