Divisibility of twisted Alexander polynomials and fibered knots

Teruaki Kitano[1]; Takayuki Morifuji[2]

  • [1] Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1-W8-43 Oh-okayama, Meguro-ku Tokyo 152-8552, Japan
  • [2] Department of Mathematics Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588, Japan

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 1, page 179-186
  • ISSN: 0391-173X

Abstract

top
We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian S L ( 2 , 𝔽 ) -representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree 4 g - 2 for a fibered knot of genus  g .

How to cite

top

Kitano, Teruaki, and Morifuji, Takayuki. "Divisibility of twisted Alexander polynomials and fibered knots." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.1 (2005): 179-186. <http://eudml.org/doc/84553>.

@article{Kitano2005,
abstract = {We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian $SL(2,\mathbb \{F\})$-representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree $4g-2$ for a fibered knot of genus $g$.},
affiliation = {Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1-W8-43 Oh-okayama, Meguro-ku Tokyo 152-8552, Japan; Department of Mathematics Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588, Japan},
author = {Kitano, Teruaki, Morifuji, Takayuki},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {179-186},
publisher = {Scuola Normale Superiore, Pisa},
title = {Divisibility of twisted Alexander polynomials and fibered knots},
url = {http://eudml.org/doc/84553},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Kitano, Teruaki
AU - Morifuji, Takayuki
TI - Divisibility of twisted Alexander polynomials and fibered knots
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 1
SP - 179
EP - 186
AB - We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian $SL(2,\mathbb {F})$-representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree $4g-2$ for a fibered knot of genus $g$.
LA - eng
UR - http://eudml.org/doc/84553
ER -

References

top
  1. [1] J. C. Cha, Fibred knots and twisted Alexander invariants, Trans. Amer. Math. Soc. 355 (2003), 4187–4200. Zbl1028.57004MR1990582
  2. [2] G. de Rham, Introduction aux polynomes d’un nœud, Enseign. Math. 13 (1968), 187–194. Zbl0157.54803
  3. [3] H. Goda, T. Kitano and T. Morifuji, Reidemeister torsion, twisted Alexander polynomial and fibered knots, Comment. Math. Helv. 80 (2005), 51–61. Zbl1066.57008MR2130565
  4. [4] H. Goda and T. Morifuji, Twisted Alexander polynomial for S L ( 2 , ) -representations and fibered knots, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 97–101. Zbl1061.57012MR2013157
  5. [5] B. Jiang and S. Wang, Twisted topological invariants associated with representations, In: “Topics in Knot Theory”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Academic Publishers, Dordrecht, 1993, 211–227. Zbl0815.55001MR1257911
  6. [6] P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661. Zbl0928.57005MR1670420
  7. [7] P. Kirk and C. Livingston, Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999), 663–671. Zbl0928.57006MR1670424
  8. [8] T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431–442. Zbl0863.57001MR1405595
  9. [9] T. Kitano, M. Suzuki and M. Wada, Twisted Alexander polynomial and surjectivity of a group homomorphism, preprint. Zbl1081.57004MR2171811
  10. [10] K. Kodama, http://www.math.kobe-u.ac.jp/HOME/kodama/knot.html 
  11. [11] X. S. Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380. Zbl0986.57003MR1852950
  12. [12] T. Morifuji, A twisted invariant for finitely presentable groups, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 143–145. Zbl0988.57008MR1801675
  13. [13] T. Morifuji, Twisted Alexander polynomial for the braid group, Bull. Austral. Math. Soc. 64 (2001), 1–13. Zbl1008.20028MR1848073
  14. [14] L. Neuwirth, “Knot Groups”, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. Zbl0184.48903MR176462
  15. [15] R. Riley, Nonabelian representations of 2 -bridge knot groups, Quarterly J. Math. Oxford (2) 35 (1984), 191–208. Zbl0549.57005MR745421
  16. [16] M. Suzuki, Twisted Alexander polynomial for the Lawrence-Krammer representation, Bull. Austral. Math. Soc. 70 (2004), 67–71. Zbl1065.57013MR2079361
  17. [17] M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241–256. Zbl0822.57006MR1273784

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.