-harmonic measure is not additive on null sets
José G. Llorente[1]; Juan J. Manfredi[2]; Jang-Mei Wu[3]
- [1] Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Spain
- [2] Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, USA
- [3] Department of Mathematics University of Illinois 1409 West Green Street Urbana, IL 61801, USA
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 2, page 357-373
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topLlorente, José G., Manfredi, Juan J., and Wu, Jang-Mei. "$p$-harmonic measure is not additive on null sets." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 357-373. <http://eudml.org/doc/84563>.
@article{Llorente2005,
abstract = {When $1<p<\infty $ and $p\ne 2$ the $p$-harmonic measure on the boundary of the half plane $\mathbb \{R\}^2_+$ is not additive on null sets. In fact, there are finitely many sets $E_1$, $E_2$,...,$E_\{\kappa \}$ in $\mathbb \{R\}$, of $p$-harmonic measure zero, such that $ E_1 \cup E_2 \cup ... \cup E_\{\kappa \}\!=\!\mathbb \{R\}$.},
affiliation = {Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Spain; Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, USA; Department of Mathematics University of Illinois 1409 West Green Street Urbana, IL 61801, USA},
author = {Llorente, José G., Manfredi, Juan J., Wu, Jang-Mei},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-Laplacian; -harmonic function; -superharmonic functions; Choquet capacity; -harmonic measure},
language = {eng},
number = {2},
pages = {357-373},
publisher = {Scuola Normale Superiore, Pisa},
title = {$p$-harmonic measure is not additive on null sets},
url = {http://eudml.org/doc/84563},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Llorente, José G.
AU - Manfredi, Juan J.
AU - Wu, Jang-Mei
TI - $p$-harmonic measure is not additive on null sets
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 357
EP - 373
AB - When $1<p<\infty $ and $p\ne 2$ the $p$-harmonic measure on the boundary of the half plane $\mathbb {R}^2_+$ is not additive on null sets. In fact, there are finitely many sets $E_1$, $E_2$,...,$E_{\kappa }$ in $\mathbb {R}$, of $p$-harmonic measure zero, such that $ E_1 \cup E_2 \cup ... \cup E_{\kappa }\!=\!\mathbb {R}$.
LA - eng
KW - -Laplacian; -harmonic function; -superharmonic functions; Choquet capacity; -harmonic measure
UR - http://eudml.org/doc/84563
ER -
References
top- [ARY] V. Alvarez, J. M. Rodríguez and D. V. Yakubovich, Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 48 (2001), 47–64. Zbl1006.31006MR1827075
- [AM] P. Avilés and J. J. Manfredi, On null sets of -harmonic measure, In: “Partial Differential Equations with minimal smoothness and applications”, Chicago, IL 1990, B. Dahlberg et al. (eds.), Springer Verlag, New York, 1992, 33–36. Zbl0785.31007MR1155851
- [B] A. Baernstein, Comparison of -harmonic measures of subsets of the unit circle, St. Petersburg Math. J. 9 (1998), 543–551. Zbl0922.31002MR1466798
- [BBS] A. Björn, J. Björn and N. Shanmugalingam, A problem of Baernstein on the equality of the -harmonic measure of a set and its closure, Proc. AMS, to appear. Zbl1084.31008
- [DB] E. DiBenedetto, -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827–850. Zbl0539.35027MR709038
- [CFPR] A. Cantón, J. L. Fernández, D. Pestana and J. M. Rodríguez, On harmonic functions on trees, Potential Anal. 15 (2001), 1999–244. Zbl1008.31006MR1837265
- [FGMS] E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227–251. Zbl0703.35058MR1028741
- [GLM] S. Granlund, P. Lindquist and O. Martio, -harmonic measure in space, Ann. Acad. Sci. Fenn. Math. Diss. 7 (1982), 233–247 Zbl0468.30015MR686642
- [HM] J. Heinonen and O. Martio, Estimates for -harmonic measures and Øksendal’s theorem for quasiconformal mappings, Indiana Univ. Math. J. 36 (1987), 659–683. Zbl0643.35022MR905618
- [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear potential theory of degenerate elliptic equations”, Clarendon Press, New York, 1993. Zbl0780.31001MR1207810
- [KW] R. Kaufman and J.-M. Wu, Fatou theorem of -harmonic functions on trees, Ann. Probab. 28 (2000), 1138–1148. Zbl1038.31007MR1797306
- [KLW] R. Kaufman, J. G. Llorente and J.-M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. Diss. 28 (2003), 279–302. Zbl1033.31004MR1996439
- [K] J. Kurki, Invariant sets for -harmonic measure, Ann. Acad. Sci. Fenn. Math. Diss. 20 (1995), 433–436. Zbl0851.31010MR1346825
- [L1] J. L. Lewis, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-856. Zbl0554.35048MR721568
- [L2] J. L. Lewis, “Note on a theorem of Wolff”, Holomorphic Functions and Moduli, Vol. 1, Berkeley, CA, 1986, D. Drasin et al. (eds.), Math. Sci. Res. Inst. Publ., Vol. 10, Springer-Verlag, 1988, 93–100. Zbl0667.35016MR955811
- [MW] J. J. Manfredi and A. Weitsman, On the Fatou theorem for -harmonic functions, Comm. Partial Differential Equations 13 (1988), 651–658. Zbl0661.31014MR934377
- [M1] O. Martio, Potential theoretic aspects of nonlinear elliptic partial differential equations, Bericht Report 44, University of Jyväskylä, Jyväskylä, 1989. Zbl0684.35008MR1004672
- [M2] O. Martio, Sets of zero elliptic harmonic measures, Ann. Acad. Sci. Fenn. Math. Diss. 14 (1989), 47–55. Zbl0741.31004MR997970
- [Ma] V. G. Maz’ja, On the continuity at a boundary point of solutions of quasi-linear elliptic equations (English translation), Vestnik Leningrad Univ. Math. 3(1976), 225–242. Original in Vestnik Leningrad. Univ. 25 (1970), 42–45 (in Russian). Zbl0252.35024MR274948
- [Wo1] T. Wolff, Gap series constructions for the -Laplacian, Preprint, 1984. MR2346563
- [Wo2] T. Wolff, Generalizations of Fatou’s theorem, Proceedings of the International Congres of Mathematics, Berkeley, CA, 1986, Vol. 2, Amer. Math. Soc., Providence, RI, 1987, 990–993. Zbl0691.35043MR934300
- [W] J.-M. Wu, Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math. 18 (1993), 77–91. Zbl0791.28003MR1207896
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.