The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

p -harmonic measure is not additive on null sets

José G. Llorente[1]; Juan J. Manfredi[2]; Jang-Mei Wu[3]

  • [1] Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Spain
  • [2] Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, USA
  • [3] Department of Mathematics University of Illinois 1409 West Green Street Urbana, IL 61801, USA

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 2, page 357-373
  • ISSN: 0391-173X

Abstract

top
When 1 < p < and p 2 the p -harmonic measure on the boundary of the half plane + 2 is not additive on null sets. In fact, there are finitely many sets E 1 , E 2 ,..., E κ in , of p -harmonic measure zero, such that E 1 E 2 . . . E κ = .

How to cite

top

Llorente, José G., Manfredi, Juan J., and Wu, Jang-Mei. "$p$-harmonic measure is not additive on null sets." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.2 (2005): 357-373. <http://eudml.org/doc/84563>.

@article{Llorente2005,
abstract = {When $1&lt;p&lt;\infty $ and $p\ne 2$ the $p$-harmonic measure on the boundary of the half plane $\mathbb \{R\}^2_+$ is not additive on null sets. In fact, there are finitely many sets $E_1$, $E_2$,...,$E_\{\kappa \}$ in $\mathbb \{R\}$, of $p$-harmonic measure zero, such that $ E_1 \cup E_2 \cup ... \cup E_\{\kappa \}\!=\!\mathbb \{R\}$.},
affiliation = {Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Spain; Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, USA; Department of Mathematics University of Illinois 1409 West Green Street Urbana, IL 61801, USA},
author = {Llorente, José G., Manfredi, Juan J., Wu, Jang-Mei},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-Laplacian; -harmonic function; -superharmonic functions; Choquet capacity; -harmonic measure},
language = {eng},
number = {2},
pages = {357-373},
publisher = {Scuola Normale Superiore, Pisa},
title = {$p$-harmonic measure is not additive on null sets},
url = {http://eudml.org/doc/84563},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Llorente, José G.
AU - Manfredi, Juan J.
AU - Wu, Jang-Mei
TI - $p$-harmonic measure is not additive on null sets
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 2
SP - 357
EP - 373
AB - When $1&lt;p&lt;\infty $ and $p\ne 2$ the $p$-harmonic measure on the boundary of the half plane $\mathbb {R}^2_+$ is not additive on null sets. In fact, there are finitely many sets $E_1$, $E_2$,...,$E_{\kappa }$ in $\mathbb {R}$, of $p$-harmonic measure zero, such that $ E_1 \cup E_2 \cup ... \cup E_{\kappa }\!=\!\mathbb {R}$.
LA - eng
KW - -Laplacian; -harmonic function; -superharmonic functions; Choquet capacity; -harmonic measure
UR - http://eudml.org/doc/84563
ER -

References

top
  1. [ARY] V. Alvarez, J. M. Rodríguez and D. V. Yakubovich, Estimates for nonlinear harmonic “measures” on trees, Michigan Math. J. 48 (2001), 47–64. Zbl1006.31006MR1827075
  2. [AM] P. Avilés and J. J. Manfredi, On null sets of p -harmonic measure, In: “Partial Differential Equations with minimal smoothness and applications”, Chicago, IL 1990, B. Dahlberg et al. (eds.), Springer Verlag, New York, 1992, 33–36. Zbl0785.31007MR1155851
  3. [B] A. Baernstein, Comparison of p -harmonic measures of subsets of the unit circle, St. Petersburg Math. J. 9 (1998), 543–551. Zbl0922.31002MR1466798
  4. [BBS] A. Björn, J. Björn and N. Shanmugalingam, A problem of Baernstein on the equality of the p -harmonic measure of a set and its closure, Proc. AMS, to appear. Zbl1084.31008
  5. [DB] E. DiBenedetto, C 1 + α -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827–850. Zbl0539.35027MR709038
  6. [CFPR] A. Cantón, J. L. Fernández, D. Pestana and J. M. Rodríguez, On harmonic functions on trees, Potential Anal. 15 (2001), 1999–244. Zbl1008.31006MR1837265
  7. [FGMS] E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227–251. Zbl0703.35058MR1028741
  8. [GLM] S. Granlund, P. Lindquist and O. Martio, F -harmonic measure in space, Ann. Acad. Sci. Fenn. Math. Diss. 7 (1982), 233–247 Zbl0468.30015MR686642
  9. [HM] J. Heinonen and O. Martio, Estimates for F -harmonic measures and Øksendal’s theorem for quasiconformal mappings, Indiana Univ. Math. J. 36 (1987), 659–683. Zbl0643.35022MR905618
  10. [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, “Nonlinear potential theory of degenerate elliptic equations”, Clarendon Press, New York, 1993. Zbl0780.31001MR1207810
  11. [KW] R. Kaufman and J.-M. Wu, Fatou theorem of p -harmonic functions on trees, Ann. Probab. 28 (2000), 1138–1148. Zbl1038.31007MR1797306
  12. [KLW] R. Kaufman, J. G. Llorente and J.-M. Wu, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. Diss. 28 (2003), 279–302. Zbl1033.31004MR1996439
  13. [K] J. Kurki, Invariant sets for 𝒜 -harmonic measure, Ann. Acad. Sci. Fenn. Math. Diss. 20 (1995), 433–436. Zbl0851.31010MR1346825
  14. [L1] J. L. Lewis, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-856. Zbl0554.35048MR721568
  15. [L2] J. L. Lewis, “Note on a theorem of Wolff”, Holomorphic Functions and Moduli, Vol. 1, Berkeley, CA, 1986, D. Drasin et al. (eds.), Math. Sci. Res. Inst. Publ., Vol. 10, Springer-Verlag, 1988, 93–100. Zbl0667.35016MR955811
  16. [MW] J. J. Manfredi and A. Weitsman, On the Fatou theorem for p -harmonic functions, Comm. Partial Differential Equations 13 (1988), 651–658. Zbl0661.31014MR934377
  17. [M1] O. Martio, Potential theoretic aspects of nonlinear elliptic partial differential equations, Bericht Report 44, University of Jyväskylä, Jyväskylä, 1989. Zbl0684.35008MR1004672
  18. [M2] O. Martio, Sets of zero elliptic harmonic measures, Ann. Acad. Sci. Fenn. Math. Diss. 14 (1989), 47–55. Zbl0741.31004MR997970
  19. [Ma] V. G. Maz’ja, On the continuity at a boundary point of solutions of quasi-linear elliptic equations (English translation), Vestnik Leningrad Univ. Math. 3(1976), 225–242. Original in Vestnik Leningrad. Univ. 25 (1970), 42–45 (in Russian). Zbl0252.35024MR274948
  20. [Wo1] T. Wolff, Gap series constructions for the p -Laplacian, Preprint, 1984. MR2346563
  21. [Wo2] T. Wolff, Generalizations of Fatou’s theorem, Proceedings of the International Congres of Mathematics, Berkeley, CA, 1986, Vol. 2, Amer. Math. Soc., Providence, RI, 1987, 990–993. Zbl0691.35043MR934300
  22. [W] J.-M. Wu, Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math. 18 (1993), 77–91. Zbl0791.28003MR1207896

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.