A diffused interface whose chemical potential lies in a Sobolev space
- [1] Department of Mathematics Hokkaido University Sapporo 060-0810, Japan
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 3, page 487-510
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topTonegawa, Yoshihiro. "A diffused interface whose chemical potential lies in a Sobolev space." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 487-510. <http://eudml.org/doc/84568>.
@article{Tonegawa2005,
abstract = {We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms $W^\{1,p\}$ of the associated chemical potential fields are bounded uniformly, where $p>\frac\{n\}\{2\}$ and $n$ is the dimension of the domain. We show that the limit interface as $\varepsilon $ tends to zero is an integral varifold with a sharp integrability condition on the mean curvature.},
affiliation = {Department of Mathematics Hokkaido University Sapporo 060-0810, Japan},
author = {Tonegawa, Yoshihiro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {487-510},
publisher = {Scuola Normale Superiore, Pisa},
title = {A diffused interface whose chemical potential lies in a Sobolev space},
url = {http://eudml.org/doc/84568},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Tonegawa, Yoshihiro
TI - A diffused interface whose chemical potential lies in a Sobolev space
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 487
EP - 510
AB - We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms $W^{1,p}$ of the associated chemical potential fields are bounded uniformly, where $p>\frac{n}{2}$ and $n$ is the dimension of the domain. We show that the limit interface as $\varepsilon $ tends to zero is an integral varifold with a sharp integrability condition on the mean curvature.
LA - eng
UR - http://eudml.org/doc/84568
ER -
References
top- [1] W. Allard, On the first variation of a varifold, Ann. of Math. 95 (1972), 417–491. Zbl0252.49028MR307015
- [2] G. Bellettini and L. Mugnai, On the approximation of the elastica functional in radial symmetry, Calc. Var. 24 (2005), 1–20. Zbl1086.49009MR2157848
- [3] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258–267.
- [4] X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differential Geom. 44 (1996), 262–141. Zbl0874.35045MR1425577
- [5] Q. Du, C. Liu, R. Ryham and X. Wang, The phase field formulation of the Willmore problem, Nonlinearity 18 (2005), 1249–1267. Zbl1125.35366MR2134893
- [6] L. C. Evans and R. F. Gariepy, “Measure theory and fine properties of functions”, Studies in Advanced Math., CRC Press, 1992. Zbl0804.28001MR1158660
- [7] D. Gilbarg and N. S. Trudinger, “Elliptic partial differential equations of second order”, 2nd Edition, Springer-Verlag, 1983. Zbl0562.35001MR737190
- [8] M. E. Gurtin, Some results and conjectures in the gradient theory of phase transitions, In: “Metastability and incompletely posed problems”, S. Antman et al. (eds.), pp. 301–317, Springer, 1987. Zbl0634.49019MR870014
- [9] J. E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals - Cahn - Hilliard theory, Calc. Var. 10 (2000), 49–84. Zbl1070.49026MR1803974
- [10] R. Kohn, M. Reznikoff and Y. Tonegawa, The sharp-interface limit of the action functional for Allen Cahn in one space dimension, to appear in Cal. Var. Zbl1094.60044
- [11] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal. 98 (1987), 123–142. Zbl0616.76004MR866718
- [12] R. Moser, A higher order asymptotic problem related to phase transitions, preprint. Zbl1088.49030MR2191773
- [13] Y. Nagase and Y. Tonegawa, A singular perturbation problem with a Willmore-type energy bound, in preparation.
- [14] P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions, Comm. Pure Appl. Math. 51 (1998), 551–579. Zbl0955.58011MR1611144
- [15] M. Röger and R. Schätzle, On a modified conjecture of De Giorgi, in preparation.
- [16] R. Schätzle, Hypersurfaces with mean curvature given by an ambient Sobolev function, J. Diffefential Geom. 58 (2001), 371–420. Zbl1055.49032MR1906780
- [17] L. Simon, “Lectures on geometric measure theory”, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 3, 1983. Zbl0546.49019MR756417
- [18] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal. 101 (1988), no. 3, 209–260. Zbl0647.49021MR930124
- [19] Y. Tonegawa, Phase field model with a variable chemical potential, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 993–1019. Zbl1013.35070MR1926927
Citations in EuDML Documents
top- Gilles A. Francfort, Nam Q. Le, Sylvia Serfaty, Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
- Gilles A. Francfort, Nam Q. Le, Sylvia Serfaty, Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.