Stochastic Poisson-Sigma model

Rémi Léandre[1]

  • [1] Institut de Mathématiques Faculté des Sciences Université de Bourgogne 21000 Dijon, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 653-667
  • ISSN: 0391-173X

Abstract

top
We produce a stochastic regularization of the Poisson-Sigma model of Cattaneo-Felder, which is an analogue regularization of Klauder’s stochastic regularization of the hamiltonian path integral [23] in field theory. We perform also semi-classical limits.

How to cite

top

Léandre, Rémi. "Stochastic Poisson-Sigma model." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 653-667. <http://eudml.org/doc/84575>.

@article{Léandre2005,
abstract = {We produce a stochastic regularization of the Poisson-Sigma model of Cattaneo-Felder, which is an analogue regularization of Klauder’s stochastic regularization of the hamiltonian path integral [23] in field theory. We perform also semi-classical limits.},
affiliation = {Institut de Mathématiques Faculté des Sciences Université de Bourgogne 21000 Dijon, France},
author = {Léandre, Rémi},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {653-667},
publisher = {Scuola Normale Superiore, Pisa},
title = {Stochastic Poisson-Sigma model},
url = {http://eudml.org/doc/84575},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Léandre, Rémi
TI - Stochastic Poisson-Sigma model
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 653
EP - 667
AB - We produce a stochastic regularization of the Poisson-Sigma model of Cattaneo-Felder, which is an analogue regularization of Klauder’s stochastic regularization of the hamiltonian path integral [23] in field theory. We perform also semi-classical limits.
LA - eng
UR - http://eudml.org/doc/84575
ER -

References

top
  1. [1] H. Airault and P. Malliavin, “Quasi-sure Analysis”, Publication Université Paris VI, Paris, 1990. 
  2. [2] H. Airault and P. Malliavin, “Integration on Loop Groups”, Publication Université Paris VI, Paris, 1990. Zbl0787.22021
  3. [3] S. Albeverio, Loop groups, random gauge fields, Chern-Simons models, strings: some recent mathematical developments, In: “Espaces de Lacets”, R. Léandre, S. Paycha and T. Wurzbacher (eds.), Publi. Univ. Strasbourg, Strasbourg, 1996, 5–34. 
  4. [4] S. Albeverio, R. Léandre and M. Röckner, Construction of a rotational invariant diffusion on the free loop space. C.R. Acad. Sci. Paris Sér. I Math. 316 (1993), 287-292. Zbl0776.58041MR1205201
  5. [5] M. Arnaudon and S. Paycha, Stochastic tools on Hilbert manifolds: interplay with geometry and physics, Comm. Math. Phys. 197 (1997), 243–260. Zbl0888.58004MR1463828
  6. [6] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, I. Ann. Phys. (NY) 111 (1978), 61–110. Zbl0377.53024MR496157
  7. [7] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation quantization and quantization, II. Ann. Phys. (NY) 111 (1978), 111–151. Zbl0377.53025MR496158
  8. [8] Y. Belopolskaya and Y. K. Daletskii, “Stochastic Equations and Differential Geometry”, Kluwer, Dordrecht, 1990. Zbl0696.60053
  9. [9] Y. Belopolskaya and Y. Gliklikh, Stochastic processes on groups of diffeomorphisms and viscous hydrodynamics, Inf. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 145-159. Zbl1056.58010MR1914833
  10. [10] J. M. Bismut, “Mécanique Aléatoire”, Lect. Notes. Math., Vol. 966, Springer, Heidelberg, 1981. Zbl0457.60002
  11. [11] J. M. Bismut, “Large Deviations and Malliavin Calculus”, Progress in Math., Vol. 45, Birkhäuser, Basel, 1984. Zbl0537.35003MR755001
  12. [12] Z. Brzezniak and K. D. Elworthy, Stochastic differential equations on Banach manifolds, Method. Funct. Anal. Topology 6 (in honour of Y. Daletskii) (2000), 43–84. Zbl0965.58028MR1784435
  13. [13] Z. Brzezniak and R. Léandre, Horizontal lift of an infinite dimensional diffusion, Potential Anal. 12 (2000), 249–280. Zbl0960.58020MR1752854
  14. [14] Z. Brzezniak and R. Léandre, Brownian pants on a manifold, Preprint. Zbl1103.58018
  15. [15] A. Cattaneo and G. Felder, A path integral approach to Kontsevich quantization formula, Comm. Math. Phys. 212 (2000), 591–611. Zbl1038.53088MR1779159
  16. [16] Y. Daletskii, Measures and stochastic equations on infinite-dimensional manifolds, In: “Espaces de Lacets”, R. Léandre, S. Paycha and T. Wuerzbacher (eds.), Publi. Univ. Strasbourg, Strasbourg, 1996, 45–52. 
  17. [17] G. Dito and D. Sternheimer, Deformation quantization; genesis, developments and metamorphoses, In: “Deformation Quantization”, G. Halbout (ed.), IRMA Lectures Notes in Math. Phys., Vol. 1, Walter de Gruyter, Berlin, 2002, 9–54. Zbl1014.53054MR1914780
  18. [18] D. Elworthy and D. Truman, Classical mechanics, the diffusion heat equation and the Schrödinger equation, J. Math. Phys. 22 (1981), 2144–2166. Zbl0485.70024MR641455
  19. [19] M. Gradinaru, F. Russo and P. Vallois, Generalized covariations, local time and Stratonovitch-Itô’s formula for fractional Brownian motion, Ann. Probab. 31 (2003), 1772–1820. Zbl1059.60067MR2016600
  20. [20] A. Hirshfeld, Deformation quantization in quantum mechanics and quantum field theory, In: “Geometry, Integrability and Quantization. IV”, Mladenov I. and Naber G. (eds.), Coral Press, Sofia, 2003, 11–38. Zbl1039.53104MR1977559
  21. [21] A. Hirshfeld and T. Schwarzweller, Path integral quantization of the Poisson-Sigma model, Ann. Phys. (Leipzig), 9 (2000), 83–101. Zbl1017.81039MR1758657
  22. [22] J. Jacod, “Calcul Stochastique et Problemes de Martingales”, Lect. Notes. Math., Vol. 714, Springer, Heidelberg, 1975. Zbl0414.60053MR542115
  23. [23] J. R. Klauder and S. V. Shabanov, An introduction to coordinate-free quantization and its application to constrained systems, In: “Mathematical Methods of Quantum Physics”, C. C. Bernido (ed.), Gordon and Breach., Amsterdam, 1999, 117–131. Zbl1170.81398MR1723670
  24. [24] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., to appear. Zbl1058.53065MR2062626
  25. [25] H. Kunita, “Stochastic Flows and Stochastic Differential Equations”, Camb. Univ. Press, Cambridge, 1990. Zbl0743.60052MR1070361
  26. [26] H. H. Kuo, Diffusion and Brownian motion on infinite dimensional manifolds, Trans. Amer. Math. Soc. 159 (1972), 439–451. Zbl0255.60057MR309206
  27. [27] S. Kusuoka, More recent theory of Malliavin Calculus, Sūgaku 5 (1992), 155–173. Zbl0796.60059MR1207203
  28. [28] R. Léandre, Applications quantitatives et qualitatives du Calcul de Malliavin, In: “French-Japanese Seminar”, Métivier M. and Watanabe S. (eds.). Lect. Notes. Math., Vol. 1322, Springer, Berlin, 1988, 109–123. English translation in: “Geometry of Random Motion”, Durrett R. and Pinsky M. (eds.) Contem. Math. 73, A.M.S., Providence, 1988, 173–197. Zbl0671.58044
  29. [29] R. Léandre, Cover of the Brownian bridge and stochastic symplectic action, Rev. Math. Phys. 12 (2000), 91–137. Zbl0968.58027MR1750777
  30. [30] R. Léandre, Analysis on loop spaces and topology, Math. Notes. 72 (2002), 212–229. Zbl1042.58003MR1942549
  31. [31] R. Léandre, Stochastic Wess-Zumino-Novikov-Witten model on the torus, J. Math. Phys. 44 (2003), 5530–5568. Zbl1063.58022MR2023542
  32. [32] R. Léandre, Brownian cylinders and intersecting branes, Rep. Math. Phys. 52 (2003), 363–372. Zbl1049.58036MR2029767
  33. [33] R. Léandre, Markov property and operads, In: “Quantum Limits in the Second Law of Thermodynamics”, I. Nikulov and D. Sheehan (eds.), Entropy, Vol. 6, 2004, 180–215. Zbl1063.60076MR2081873
  34. [34] R. Léandre, Brownian pants and Deligne cohomology, J. Math. Phys. 46 (2005). Zbl1067.58029MR2125578
  35. [35] R. Léandre, Bundle gerbes and Brownian motion, In: “Lie Theory and Application in Physics. V.”, V. Dobrev and H. Doebner (eds.). World Scientific, Singapore, 2004, 343–352. MR2172912
  36. [36] R. Léandre, Galton-Watson tree and branching loop, In: “Geometry, Integrability and Quantization. VI”, I. Mladenov and A. Hirshfeld (eds.), Softek, Sofia, 2005, 276–284. Zbl1078.60067MR2161774
  37. [37] R. Léandre, Two examples of stochastic field theories, Osaka J. Math. 42 (2005), 353–365. Zbl1078.81056MR2147732
  38. [38] P. Malliavin, Stochastic Calculus of variation and hypoelliptic operators, In: “Stochastic Analysis”, K. Itô (ed.), Kinokuyina, Tokyo, 1978, 155-263. Zbl0411.60060MR536013
  39. [39] P. A. Meyer, Flot d’une équation différentielle stochastique, In: “Séminaire de Probabilités. XV”, Azéma J. and Yor M. (eds.), Lect. Notes. Math., Vol. 850, Springer, Heidelberg, 1981, 100–117. Zbl0461.60076MR622556
  40. [40] S. Molchanov, Diffusion processes and Riemannian geometry, Russian Math. Surveys 30 (1975), 1–63. Zbl0315.53026MR413289
  41. [41] D. Nualart, “Malliavin Calculus and Related Topics”, Springer, Heidelberg, 1997. Zbl0837.60050MR2200233
  42. [42] D. Nualart and M. Sanz, Malliavin Calculus for two-parameter Wiener functionals, Z. Wahrsch. Verw. Gebiete 70 (1985), 573–590. Zbl0595.60065MR807338
  43. [43] V. Pipiras and M. Taqqu, Integration question related to fractional Brownian motion, Probab. Theory Related Fields 118 (2000), 251–291. Zbl0970.60058MR1790083
  44. [44] H. K. Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math. 25 (1988), 665–696. Zbl0737.46038MR969026
  45. [45] S. Watanabe, Stochastic analysis and its application Sūgaku 5 (1992), 51–71. Zbl0796.60058MR1161472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.