Displaying similar documents to “Stochastic Poisson-Sigma model”

Splitting the conservation process into creation and annihilation parts

Nicolas Privault (1998)

Banach Center Publications

Similarity:

The aim of this paper is the study of a non-commutative decomposition of the conservation process in quantum stochastic calculus. The probabilistic interpretation of this decomposition uses time changes, in contrast to the spatial shifts used in the interpretation of the creation and annihilation operators on Fock space.

SPDEs with pseudodifferential generators: the existence of a density

Samy Tindel (2000)

Applicationes Mathematicae

Similarity:

We consider the equation du(t,x)=Lu(t,x)+b(u(t,x))dtdx+σ(u(t,x))dW(t,x) where t belongs to a real interval [0,T], x belongs to an open (not necessarily bounded) domain 𝒪 , and L is a pseudodifferential operator. We show that under sufficient smoothness and nondegeneracy conditions on L, the law of the solution u(t,x) at a fixed point ( t , x ) [ 0 , T ] × 𝒪 is absolutely continuous with respect to the Lebesgue measure.

Some applications of Girsanov's theorem to the theory of stochastic differential inclusions

Micha Kisielewicz (2003)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The Girsanov's theorem is useful as well in the general theory of stochastic analysis as well in its applications. We show here that it can be also applied to the theory of stochastic differential inclusions. In particular, we obtain some special properties of sets of weak solutions to some type of these inclusions.

Stochastic calculus with respect to fractional Brownian motion

David Nualart (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ( 0 , 1 ) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1 / 2 , the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with...