Solutions for Toda systems on Riemann surfaces

Jiayu Li[1]; Yuxiang Li[2]

  • [1] Math. Group The abdus salam ICTP 34100 Trieste, Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China
  • [2] Math. Group The abdus salam ICTP 34100 Trieste, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 703-728
  • ISSN: 0391-173X

Abstract

top
In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.

How to cite

top

Li, Jiayu, and Li, Yuxiang. "Solutions for Toda systems on Riemann surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 703-728. <http://eudml.org/doc/84577>.

@article{Li2005,
abstract = {In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.},
affiliation = {Math. Group The abdus salam ICTP 34100 Trieste, Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China; Math. Group The abdus salam ICTP 34100 Trieste, Italy},
author = {Li, Jiayu, Li, Yuxiang},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {703-728},
publisher = {Scuola Normale Superiore, Pisa},
title = {Solutions for Toda systems on Riemann surfaces},
url = {http://eudml.org/doc/84577},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Li, Jiayu
AU - Li, Yuxiang
TI - Solutions for Toda systems on Riemann surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 703
EP - 728
AB - In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.
LA - eng
UR - http://eudml.org/doc/84577
ER -

References

top
  1. [1] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501–525. Zbl0745.76001MR1145596
  2. [2] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys. 174 (1995), 229–260. Zbl0840.76002MR1362165
  3. [3] A. S. Y. Chang and P. Yang, Conformal deformation of metrics on S 2 , J. Differential Geom. 23 (1988), 259–296. Zbl0649.53022MR925123
  4. [4] A. S. Y. Chang and P. Yang, Prescribing Gaussian curvature on S 2 , Acta Math. 159 (1987), 214–259. Zbl0636.53053MR908146
  5. [5] C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), 728–771. Zbl1040.53046MR1885666
  6. [6] W. X. Chen and W. Y. Ding, Scalar curvature on S 2 , Trans. Amer. Math. Soc. 303 (1987), 365–382. Zbl0635.35026MR896027
  7. [7] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615–622. Zbl0768.35025MR1121147
  8. [8] W. Ding, J. Jost, J. Li and G. Wang, The differential equation Δ u = 8 π - 8 π h e u on a compact Riemann surface, Asian J. Math. 1 (1997), 230–248. Zbl0955.58010MR1491984
  9. [9] W. Ding, J. Jost, J. Li and G. Wang,An analysis of the two-vortex case in the Chern-Simons Higgs model, Calc. Var. Partial Differential Equations 7 (1998), 87–97. Zbl0928.58021MR1624438
  10. [10] W. Ding, J. Jost, J. Li and G. Wang, Multiplicity results for the two-vortex Chern-Simons Higgs model on the two sphere, Comment. Math. Helv. 74 (1999), 118–142. Zbl0913.53032MR1677094
  11. [11] W. Ding, J. Jost, J. Li, X. Peng and G. Wang, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6 t h order potentials, Commun. Math. Phys. 217 (2001), 383–407. Zbl0994.58009MR1821229
  12. [12] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q -curvature, preprint, SISSA, 70/2004/M. Zbl1186.53050MR2456884
  13. [13] J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the Abelian Chern-Simons theory, Phys. Rev. Lett. 64 (1990), 2230–2233. Zbl1014.58500MR1050529
  14. [14] R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), 2234–2237. Zbl1050.81595MR1050530
  15. [15] J. Jost, C.-S. Lin and G. Wang, Analytic aspects of the Toda system: II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., to appear. Zbl1207.35140MR2199785
  16. [16] J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality, Comm. Pure Appl. Math. 54 (2001), 1289–1319. Zbl1099.35035MR1846799
  17. [17] J. Kazdan and F. Warner, Curvature functions for compact 2 -manifolds, Ann. of Math. 99 (1974), 14–47. Zbl0273.53034MR343205
  18. [18] Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations 14 (2001), 163–192. Zbl0995.58021MR1838044
  19. [19] Y. Li, The extremal functions for Moser-Trudinger inequality on compact Riemannian manifolds, China Ser. A 48 (2005), 618–648. Zbl1100.53036MR2158479
  20. [20] M. Lucia and M. Nolasco, Chern-Simons vortes theorey and Toda systems, J. Differential Equations 184 (2002), 443–474. Zbl1013.58009MR1929885
  21. [21] M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), 31–94. Zbl0951.58030MR1710938
  22. [22] M. Nolasco and G. Tarantello, Vortex condensates for the SU ( 3 ) Chern-Simons theory, Commun. Math. Phys. 213 (2000), 599–639. Zbl0998.81047MR1785431
  23. [23] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 109–121. Zbl0912.58046MR1619043
  24. [24] G. Tarantello, Multiple condensate solutions for the Chern-Simons Higgs theory, J. Math. Phys. 37 (1996), 3769–3796. Zbl0863.58081MR1400816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.