Solutions for Toda systems on Riemann surfaces
Jiayu Li[1]; Yuxiang Li[2]
- [1] Math. Group The abdus salam ICTP 34100 Trieste, Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China
- [2] Math. Group The abdus salam ICTP 34100 Trieste, Italy
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 4, page 703-728
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topLi, Jiayu, and Li, Yuxiang. "Solutions for Toda systems on Riemann surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 703-728. <http://eudml.org/doc/84577>.
@article{Li2005,
abstract = {In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.},
affiliation = {Math. Group The abdus salam ICTP 34100 Trieste, Italy and Academy of Mathematics and Systems Sciences Chinese Academy of Sciences Beijing 100080, P. R. of China; Math. Group The abdus salam ICTP 34100 Trieste, Italy},
author = {Li, Jiayu, Li, Yuxiang},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {703-728},
publisher = {Scuola Normale Superiore, Pisa},
title = {Solutions for Toda systems on Riemann surfaces},
url = {http://eudml.org/doc/84577},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Li, Jiayu
AU - Li, Yuxiang
TI - Solutions for Toda systems on Riemann surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 703
EP - 728
AB - In this paper we study the solutions of Toda systems on Riemann surface in the critical case, proving a sufficient condition for existence.
LA - eng
UR - http://eudml.org/doc/84577
ER -
References
top- [1] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501–525. Zbl0745.76001MR1145596
- [2] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys. 174 (1995), 229–260. Zbl0840.76002MR1362165
- [3] A. S. Y. Chang and P. Yang, Conformal deformation of metrics on , J. Differential Geom. 23 (1988), 259–296. Zbl0649.53022MR925123
- [4] A. S. Y. Chang and P. Yang, Prescribing Gaussian curvature on , Acta Math. 159 (1987), 214–259. Zbl0636.53053MR908146
- [5] C.-C. Chen and C.-S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), 728–771. Zbl1040.53046MR1885666
- [6] W. X. Chen and W. Y. Ding, Scalar curvature on , Trans. Amer. Math. Soc. 303 (1987), 365–382. Zbl0635.35026MR896027
- [7] W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991) 615–622. Zbl0768.35025MR1121147
- [8] W. Ding, J. Jost, J. Li and G. Wang, The differential equation on a compact Riemann surface, Asian J. Math. 1 (1997), 230–248. Zbl0955.58010MR1491984
- [9] W. Ding, J. Jost, J. Li and G. Wang,An analysis of the two-vortex case in the Chern-Simons Higgs model, Calc. Var. Partial Differential Equations 7 (1998), 87–97. Zbl0928.58021MR1624438
- [10] W. Ding, J. Jost, J. Li and G. Wang, Multiplicity results for the two-vortex Chern-Simons Higgs model on the two sphere, Comment. Math. Helv. 74 (1999), 118–142. Zbl0913.53032MR1677094
- [11] W. Ding, J. Jost, J. Li, X. Peng and G. Wang, Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with order potentials, Commun. Math. Phys. 217 (2001), 383–407. Zbl0994.58009MR1821229
- [12] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant -curvature, preprint, SISSA, 70/2004/M. Zbl1186.53050MR2456884
- [13] J. Hong, Y. Kim and P. Y. Pac, Multivortex solutions of the Abelian Chern-Simons theory, Phys. Rev. Lett. 64 (1990), 2230–2233. Zbl1014.58500MR1050529
- [14] R. Jackiw and E. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64 (1990), 2234–2237. Zbl1050.81595MR1050530
- [15] J. Jost, C.-S. Lin and G. Wang, Analytic aspects of the Toda system: II. Bubbling behavior and existence of solutions, Comm. Pure Appl. Math., to appear. Zbl1207.35140MR2199785
- [16] J. Jost and G. Wang, Analytic aspects of the Toda system. I. A Moser-Trudinger inequality, Comm. Pure Appl. Math. 54 (2001), 1289–1319. Zbl1099.35035MR1846799
- [17] J. Kazdan and F. Warner, Curvature functions for compact -manifolds, Ann. of Math. 99 (1974), 14–47. Zbl0273.53034MR343205
- [18] Y. Li, Moser-Trudinger inequality on compact Riemannian manifolds of dimension two, J. Partial Differential Equations 14 (2001), 163–192. Zbl0995.58021MR1838044
- [19] Y. Li, The extremal functions for Moser-Trudinger inequality on compact Riemannian manifolds, China Ser. A 48 (2005), 618–648. Zbl1100.53036MR2158479
- [20] M. Lucia and M. Nolasco, Chern-Simons vortes theorey and Toda systems, J. Differential Equations 184 (2002), 443–474. Zbl1013.58009MR1929885
- [21] M. Nolasco and G. Tarantello, Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differential Equations 9 (1999), 31–94. Zbl0951.58030MR1710938
- [22] M. Nolasco and G. Tarantello, Vortex condensates for the Chern-Simons theory, Commun. Math. Phys. 213 (2000), 599–639. Zbl0998.81047MR1785431
- [23] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), 109–121. Zbl0912.58046MR1619043
- [24] G. Tarantello, Multiple condensate solutions for the Chern-Simons Higgs theory, J. Math. Phys. 37 (1996), 3769–3796. Zbl0863.58081MR1400816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.