On multivortex solutions in Chern-Simons gauge theory
Michael Struwe; Gabriella Tarantello
Bollettino dell'Unione Matematica Italiana (1998)
- Volume: 1-B, Issue: 1, page 109-121
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topStruwe, Michael, and Tarantello, Gabriella. "On multivortex solutions in Chern-Simons gauge theory." Bollettino dell'Unione Matematica Italiana 1-B.1 (1998): 109-121. <http://eudml.org/doc/194606>.
@article{Struwe1998,
author = {Struwe, Michael, Tarantello, Gabriella},
journal = {Bollettino dell'Unione Matematica Italiana},
keywords = {self-dual equations; energy-minimizing multivortices; Chern-Simons theory; elliptic equations; two-dimensional torus},
language = {eng},
month = {2},
number = {1},
pages = {109-121},
publisher = {Unione Matematica Italiana},
title = {On multivortex solutions in Chern-Simons gauge theory},
url = {http://eudml.org/doc/194606},
volume = {1-B},
year = {1998},
}
TY - JOUR
AU - Struwe, Michael
AU - Tarantello, Gabriella
TI - On multivortex solutions in Chern-Simons gauge theory
JO - Bollettino dell'Unione Matematica Italiana
DA - 1998/2//
PB - Unione Matematica Italiana
VL - 1-B
IS - 1
SP - 109
EP - 121
LA - eng
KW - self-dual equations; energy-minimizing multivortices; Chern-Simons theory; elliptic equations; two-dimensional torus
UR - http://eudml.org/doc/194606
ER -
References
top- BREZIS, H.- MERLE, F., Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. P.D.E., 16 (1991), 1223-1253. Zbl0746.35006MR1132783
- CAGLIOTI, E.- LIONS, P. L.- MARCHIORO, C.- PULVIRENTI, M., A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525. Zbl0745.76001MR1145596
- CAGLIOTI, E.- LIONS, P. L.- MARCHIORO, C.- PULVIRENTI, M., A special class of stationary flows for two-dimensional Euler equations, a statistical mechanics description, part II, Comm. Math. Phys., 174 (1995), 229-260. Zbl0840.76002MR1362165
- DUNNE, G., Self-dual Chern Simons Theories, Lecture Notes in Physics, New Series M, 36, Springer, New York (1996). Zbl0834.58001
- HONG, J.- KIM, Y.- PAC, P. Y., Multivortex solutions of the Abelian Chern Simons theory, Phys. Rev. Lett., 64 (1990), 2230-2233. Zbl1014.58500MR1050529
- JACKIW, R.- WEINBERG, E. J., Selfdual Chern Simons vortices, Phys. Rev. Lett., 64 (1990), 2234-2237. Zbl1050.81595MR1050530
- KIESSLING, M. K. H., Statistical Mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1993), 27-56. Zbl0811.76002MR1193342
- LI, Y.- SHAFRIR, I., Blow-up analysis for solutions of in dimension two, Ind. Univ. Math. J., 43 (1994), 1255-1270. Zbl0842.35011MR1322618
- MOSER, J., A sharp form of an inequality by N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1091. Zbl0213.13001MR301504
- RICCIARDI, T.- TARANTELLO, G., in preparation.
- STRUWE, M., The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160 (1988), 19-64. Zbl0646.53005MR926524
- STRUWE, M., Critical points of embeddings of into Orlicz spaces, Ann. Inst. H. Poincaré, Analyse Nonlin., 5 (1988), 425-464. Zbl0664.35022MR970849
- SUZUKI, T., Global analysis for two dimensional elliptic eigenvalue problems with exponential nonlinearities, Ann. Inst. H. Poincaré, Analyse Nonlin., 9 (1992), 367-398. Zbl0785.35045MR1186683
- TARANTELLO, G., Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys., 37 (8) (1996), 3769-3796. Zbl0863.58081MR1400816
- TAUBES, C. H., Arbitrary N-vortex solutions to the first order Ginzburg-Landau equation, Comm. Math. Phys., 72 (1980), 277-292. Zbl0451.35101MR573986
Citations in EuDML Documents
top- Jiayu Li, Yuxiang Li, Solutions for Toda systems on Riemann surfaces
- Tonia Ricciardi, Problemi ellittici nonlineari nella teoria di gauge di Chern-Simons
- Daniele Bartolucci, Problemi ellittici non lineari con dati singolari e applicazioni alla teoria elettrodebole di Glashow-Salam-Weinberg
- Chuin Chuan Chen, Chang-Shou Lin, On the symmetry of blowup solutions to a mean field equation
- Francesca de Marchis, Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
- Chang-Shou Lin, Marcello Lucia, One-dimensional symmetry of periodic minimizers for a mean field equation
- Marcello Lucia, Isoperimetric profile and uniqueness for Neumann problems
- Zindine Djadli, Opérateurs géométriques et géométrie conforme
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.