Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator

Robert Haller-Dintelmann[1]; Julian Wiedl[1]

  • [1] Technische Universität Darmstadt Fachbereich Mathematik Schlossgartenstr. 7 D-64289 Darmstadt, Germany

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 4, page 729-748
  • ISSN: 0391-173X

Abstract

top
Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on d , we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive C 0 -semigroups on L p ( Ω ) for all 1 p < and for every domain Ω d . For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.

How to cite

top

Haller-Dintelmann, Robert, and Wiedl, Julian. "Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 729-748. <http://eudml.org/doc/84578>.

@article{Haller2005,
abstract = {Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on $\mathbb \{R\}^d$, we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive $C_0$-semigroups on $L^p(\Omega )$ for all $1 \le p &lt; \infty $ and for every domain $\Omega \subseteq \mathbb \{R\}^d$. For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.},
affiliation = {Technische Universität Darmstadt Fachbereich Mathematik Schlossgartenstr. 7 D-64289 Darmstadt, Germany; Technische Universität Darmstadt Fachbereich Mathematik Schlossgartenstr. 7 D-64289 Darmstadt, Germany},
author = {Haller-Dintelmann, Robert, Wiedl, Julian},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {729-748},
publisher = {Scuola Normale Superiore, Pisa},
title = {Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator},
url = {http://eudml.org/doc/84578},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Haller-Dintelmann, Robert
AU - Wiedl, Julian
TI - Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 729
EP - 748
AB - Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on $\mathbb {R}^d$, we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive $C_0$-semigroups on $L^p(\Omega )$ for all $1 \le p &lt; \infty $ and for every domain $\Omega \subseteq \mathbb {R}^d$. For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.
LA - eng
UR - http://eudml.org/doc/84578
ER -

References

top
  1. [1] R. A. Adams, “Sobolev Spaces”, Academic Press, New York, 1978. Zbl0347.46040MR450957
  2. [2] W. Arendt and P. Bénilan, Wiener regularity and heat semigroups on spaces of continuous functions, In: “Topics in Nonlinear Analysis”, Vol. 35, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 1999, 29–49. Zbl0920.35041MR1724790
  3. [3] M. Bertoldi and L. Lorenzi, Analytic methods for markov semigroups, preprint. Zbl1109.35005MR2313847
  4. [4] G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations 198 (2004), 35–52. Zbl1046.35025MR2037749
  5. [5] R. Dautray and J.-L. Lions, “Mathematical Analysis and Numerical Methods for Science and Technology”, Vol. 1, Springer-Verlag, Berlin, 1990. Zbl0683.35001MR1036731
  6. [6] E.B. Davies and B. Simon, L 1 -properties of intrinsic Schrödinger semigroups, J. Funct. Anal. 65 (1986), 126–146. Zbl0613.47039MR819177
  7. [7] K.-J. Engel and R. Nagel, “One-Parameter Semigroups for Linear Evolution Equations”, Vol. 194, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. Zbl0952.47036MR1721989
  8. [8] S. Fornaro, G. Metafune and E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329–353. Zbl1061.35022MR2092861
  9. [9] M. Geißert, H. Heck and M. Hieber, L p -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, 2005, preprint. Zbl1102.76015MR2254804
  10. [10] M. Geißert, H. Heck, M. Hieber and I. Wood, The Ornstein-Uhlenbeck semigroup in exterior domains, Arch. Math. (Basel), to appear. Zbl1114.47043MR2191665
  11. [11] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Operators of Second Order. Second Edition”, Vol. 224, A Series of Comprehensive Studies in Mathematics, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  12. [12] M. Hieber and J. Prüss, Functional calculi for linear operators in vector-valued L p -spaces via the transference principle, Adv. Differential Equations 3 (1998), 847–872. Zbl0956.47008MR1659281
  13. [13] M. Hieber - O. Sawada, The Navier-Stokes equations in n with linearly growing initial data, Arch. Ration. Mech. Anal. 175 (2005), 269–285. Zbl1072.35144MR2118478
  14. [14] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal. 150 (1999), 307–348. Zbl0949.35106MR1741259
  15. [15] G. Metafune, L p -spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 97–124. Zbl1065.35216MR1882026
  16. [16] G. Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures, J. Funct. Anal. 196 (2002), 40–60. Zbl1027.47036MR1941990
  17. [17] G. Metafune, D. Pallara and V. Vespri, L p -estimates for a class of elliptic operators with unbounded coefficients in n , Houston Math. J. 31 (2005), 605–620. Zbl1129.35420MR2132853
  18. [18] G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 471–485. Zbl1170.35375MR1991148
  19. [19] H. H. Schaefer, “Banach Lattices and Positive Operators”, Vol. 215 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1974. Zbl0296.47023MR423039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.