Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator
Robert Haller-Dintelmann[1]; Julian Wiedl[1]
- [1] Technische Universität Darmstadt Fachbereich Mathematik Schlossgartenstr. 7 D-64289 Darmstadt, Germany
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)
- Volume: 4, Issue: 4, page 729-748
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topHaller-Dintelmann, Robert, and Wiedl, Julian. "Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (2005): 729-748. <http://eudml.org/doc/84578>.
@article{Haller2005,
abstract = {Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on $\mathbb \{R\}^d$, we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive $C_0$-semigroups on $L^p(\Omega )$ for all $1 \le p < \infty $ and for every domain $\Omega \subseteq \mathbb \{R\}^d$. For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.},
affiliation = {Technische Universität Darmstadt Fachbereich Mathematik Schlossgartenstr. 7 D-64289 Darmstadt, Germany; Technische Universität Darmstadt Fachbereich Mathematik Schlossgartenstr. 7 D-64289 Darmstadt, Germany},
author = {Haller-Dintelmann, Robert, Wiedl, Julian},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {729-748},
publisher = {Scuola Normale Superiore, Pisa},
title = {Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator},
url = {http://eudml.org/doc/84578},
volume = {4},
year = {2005},
}
TY - JOUR
AU - Haller-Dintelmann, Robert
AU - Wiedl, Julian
TI - Kolmogorov kernel estimates for the Ornstein-Uhlenbeck operator
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 4
SP - 729
EP - 748
AB - Replacing the gaussian semigroup in the heat kernel estimates by the Ornstein-Uhlenbeck semigroup on $\mathbb {R}^d$, we define the notion of Kolmogorov kernel estimates. This allows us to show that under Dirichlet boundary conditions Ornstein-Uhlenbeck operators are generators of consistent, positive, (quasi-) contractive $C_0$-semigroups on $L^p(\Omega )$ for all $1 \le p < \infty $ and for every domain $\Omega \subseteq \mathbb {R}^d$. For exterior domains with sufficiently smooth boundary a result on the location of the spectrum of these operators is also given.
LA - eng
UR - http://eudml.org/doc/84578
ER -
References
top- [1] R. A. Adams, “Sobolev Spaces”, Academic Press, New York, 1978. Zbl0347.46040MR450957
- [2] W. Arendt and P. Bénilan, Wiener regularity and heat semigroups on spaces of continuous functions, In: “Topics in Nonlinear Analysis”, Vol. 35, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 1999, 29–49. Zbl0920.35041MR1724790
- [3] M. Bertoldi and L. Lorenzi, Analytic methods for markov semigroups, preprint. Zbl1109.35005MR2313847
- [4] G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations 198 (2004), 35–52. Zbl1046.35025MR2037749
- [5] R. Dautray and J.-L. Lions, “Mathematical Analysis and Numerical Methods for Science and Technology”, Vol. 1, Springer-Verlag, Berlin, 1990. Zbl0683.35001MR1036731
- [6] E.B. Davies and B. Simon, -properties of intrinsic Schrödinger semigroups, J. Funct. Anal. 65 (1986), 126–146. Zbl0613.47039MR819177
- [7] K.-J. Engel and R. Nagel, “One-Parameter Semigroups for Linear Evolution Equations”, Vol. 194, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000. Zbl0952.47036MR1721989
- [8] S. Fornaro, G. Metafune and E. Priola, Gradient estimates for Dirichlet parabolic problems in unbounded domains, J. Differential Equations 205 (2004), 329–353. Zbl1061.35022MR2092861
- [9] M. Geißert, H. Heck and M. Hieber, -theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, 2005, preprint. Zbl1102.76015MR2254804
- [10] M. Geißert, H. Heck, M. Hieber and I. Wood, The Ornstein-Uhlenbeck semigroup in exterior domains, Arch. Math. (Basel), to appear. Zbl1114.47043MR2191665
- [11] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Operators of Second Order. Second Edition”, Vol. 224, A Series of Comprehensive Studies in Mathematics, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [12] M. Hieber and J. Prüss, Functional calculi for linear operators in vector-valued -spaces via the transference principle, Adv. Differential Equations 3 (1998), 847–872. Zbl0956.47008MR1659281
- [13] M. Hieber - O. Sawada, The Navier-Stokes equations in with linearly growing initial data, Arch. Ration. Mech. Anal. 175 (2005), 269–285. Zbl1072.35144MR2118478
- [14] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal. 150 (1999), 307–348. Zbl0949.35106MR1741259
- [15] G. Metafune, -spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 97–124. Zbl1065.35216MR1882026
- [16] G. Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in spaces with respect to invariant measures, J. Funct. Anal. 196 (2002), 40–60. Zbl1027.47036MR1941990
- [17] G. Metafune, D. Pallara and V. Vespri, -estimates for a class of elliptic operators with unbounded coefficients in , Houston Math. J. 31 (2005), 605–620. Zbl1129.35420MR2132853
- [18] G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an -space with invariant measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 471–485. Zbl1170.35375MR1991148
- [19] H. H. Schaefer, “Banach Lattices and Positive Operators”, Vol. 215 of Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1974. Zbl0296.47023MR423039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.