L p -spectrum of Ornstein-Uhlenbeck operators

Giorgio Metafune

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)

  • Volume: 30, Issue: 1, page 97-124
  • ISSN: 0391-173X

How to cite

top

Metafune, Giorgio. "$L^p$-spectrum of Ornstein-Uhlenbeck operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 97-124. <http://eudml.org/doc/84440>.

@article{Metafune2001,
author = {Metafune, Giorgio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Ornstein-Uhlenbeck operators; drift operators; -spectrum; boundary spectrum},
language = {eng},
number = {1},
pages = {97-124},
publisher = {Scuola normale superiore},
title = {$L^p$-spectrum of Ornstein-Uhlenbeck operators},
url = {http://eudml.org/doc/84440},
volume = {30},
year = {2001},
}

TY - JOUR
AU - Metafune, Giorgio
TI - $L^p$-spectrum of Ornstein-Uhlenbeck operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 97
EP - 124
LA - eng
KW - Ornstein-Uhlenbeck operators; drift operators; -spectrum; boundary spectrum
UR - http://eudml.org/doc/84440
ER -

References

top
  1. [1] W. Arendt, Gaussian estimates and interpolation of the spectrum in LP, Differential Integral Equations7 (1994), 1153-1168. Zbl0827.35081MR1269649
  2. [2] W. Arendt - F. Räbiger - A. Sourour, Spectral properties of the operator equation A X + X B = Y, Quart. J. Math. Oxford Ser. (2) 45 (1994), 133-149. Zbl0826.47013MR1280689
  3. [3] D. Bakry, L'hypercontractivite et son utilisation en theorie des semi-groupes, in: D. Bakry, R. D. Gill, S. A. Molchanov, Lectures on probability theory, Springer LNM1581, (1992), 1-114. Zbl0856.47026MR1307413
  4. [4] D.W. Boyd, The spectrum of the Cesaro operator, Acta Sci. Math.29 (1968), 31-34. Zbl0157.45501MR239441
  5. [5] S. Cerrai, Elliptic and parabolic equations in Rn with coefficients having polynomial growth, Comm. Partial Differential Equations21 (1996), 281-317. Zbl0851.35049MR1373775
  6. [6] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal.131 (1995), 94-114. Zbl0846.47004MR1343161
  7. [7] G. Da Prato - J. Zabczyk, "Ergodicity for Infinite Dimensional Systems", Univ. Press, Cambridge, 1996. Zbl0849.60052MR1417491
  8. [8] E.B. Davies - B. Simon, L1 properties of intrinsic Schrödinger semigroups, J. Funct. Anal. 65 (1986), 126-146. Zbl0613.47039MR819177
  9. [9] B. Goldys, On Analyticity of Ornstein- Uhlenbeck semigroups, Rend. Mat. Acc. Lincei (9) 10 (1999), 131-140. Zbl1026.47506MR1769162
  10. [10] L. Hörmander, Hypoelliptic differential operators of second order, Acta Math. 119 (1967), 147-171. Zbl0156.10701MR222474
  11. [11] K. Engel - R. Nagel, "One-parameters Semigroup for Linear Evolution Equations", 194Springer Graduate Texts in Mathematics, 2000. Zbl0952.47036MR1721989
  12. [12] A. Erdelyi, "Asymptotic Expansions", Dover, 1956. Zbl0070.29002MR78494
  13. [13] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn, Ann. Scuola Norm. Sup. Pisa Cl. Sc. (4) 24 (1997), 133-164. Zbl0887.35062MR1475774
  14. [14] A. Lunardi, On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. Zbl0890.35030MR1389786
  15. [15] A. Lunardi - V. Vespri, Generation of smoothing semigroups by elliptic operators with unbounded coefficients in Rn,, Rend. Istit. Mat. Univ. Trieste28 (1997), 251-279. Zbl0899.35027MR1602271
  16. [16] A. Lunardi - V. Vespri, Optimal L∞ and Schauder estimates for elliptic and parabolic operators with unbounded coefficients, In: Proc. Conf. "Reaction-diffusion systems" G. Caristi - E. Mitidieri (eds.), Lecture notes in pure and applied mathematics194, M. Dekker (1998), 217-239. Zbl0887.47034
  17. [17] P.A. Meyer, Note sur ler processus d'Ornstein-Uhlenbeck, Seminaire de probabilités XVI, Springer LNM920 (1982), 95-133. Zbl0481.60041MR658673
  18. [18] J.M.A.M. Van Neerven - J. Zabczyk, Norm discontinuity of Ornstein-Uhlenbeck semigroups, Semigroup Forum59 (1999), 389-403. Zbl0960.47024MR1847653
  19. [19] E.M. Stein - G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces", Princeton Univ. Press, 1971. Zbl0232.42007MR304972
  20. [20] E.T. Whittaker - G.N. Watson, "A course of Modem Analysis", Cambridge Univ. Press, Cambridge, 1927. JFM53.0180.04
  21. [21] L. Weis, The stability of positive semigroups on L p spaces, Proc. Amer. Math. Soc. 123 (1995), 3089-3094. Zbl0851.47028MR1273529

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.