-spectrum of Ornstein-Uhlenbeck operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2001)
- Volume: 30, Issue: 1, page 97-124
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMetafune, Giorgio. "$L^p$-spectrum of Ornstein-Uhlenbeck operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 30.1 (2001): 97-124. <http://eudml.org/doc/84440>.
@article{Metafune2001,
author = {Metafune, Giorgio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Ornstein-Uhlenbeck operators; drift operators; -spectrum; boundary spectrum},
language = {eng},
number = {1},
pages = {97-124},
publisher = {Scuola normale superiore},
title = {$L^p$-spectrum of Ornstein-Uhlenbeck operators},
url = {http://eudml.org/doc/84440},
volume = {30},
year = {2001},
}
TY - JOUR
AU - Metafune, Giorgio
TI - $L^p$-spectrum of Ornstein-Uhlenbeck operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2001
PB - Scuola normale superiore
VL - 30
IS - 1
SP - 97
EP - 124
LA - eng
KW - Ornstein-Uhlenbeck operators; drift operators; -spectrum; boundary spectrum
UR - http://eudml.org/doc/84440
ER -
References
top- [1] W. Arendt, Gaussian estimates and interpolation of the spectrum in LP, Differential Integral Equations7 (1994), 1153-1168. Zbl0827.35081MR1269649
- [2] W. Arendt - F. Räbiger - A. Sourour, Spectral properties of the operator equation A X + X B = Y, Quart. J. Math. Oxford Ser. (2) 45 (1994), 133-149. Zbl0826.47013MR1280689
- [3] D. Bakry, L'hypercontractivite et son utilisation en theorie des semi-groupes, in: D. Bakry, R. D. Gill, S. A. Molchanov, Lectures on probability theory, Springer LNM1581, (1992), 1-114. Zbl0856.47026MR1307413
- [4] D.W. Boyd, The spectrum of the Cesaro operator, Acta Sci. Math.29 (1968), 31-34. Zbl0157.45501MR239441
- [5] S. Cerrai, Elliptic and parabolic equations in Rn with coefficients having polynomial growth, Comm. Partial Differential Equations21 (1996), 281-317. Zbl0851.35049MR1373775
- [6] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal.131 (1995), 94-114. Zbl0846.47004MR1343161
- [7] G. Da Prato - J. Zabczyk, "Ergodicity for Infinite Dimensional Systems", Univ. Press, Cambridge, 1996. Zbl0849.60052MR1417491
- [8] E.B. Davies - B. Simon, L1 properties of intrinsic Schrödinger semigroups, J. Funct. Anal. 65 (1986), 126-146. Zbl0613.47039MR819177
- [9] B. Goldys, On Analyticity of Ornstein- Uhlenbeck semigroups, Rend. Mat. Acc. Lincei (9) 10 (1999), 131-140. Zbl1026.47506MR1769162
- [10] L. Hörmander, Hypoelliptic differential operators of second order, Acta Math. 119 (1967), 147-171. Zbl0156.10701MR222474
- [11] K. Engel - R. Nagel, "One-parameters Semigroup for Linear Evolution Equations", 194Springer Graduate Texts in Mathematics, 2000. Zbl0952.47036MR1721989
- [12] A. Erdelyi, "Asymptotic Expansions", Dover, 1956. Zbl0070.29002MR78494
- [13] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn, Ann. Scuola Norm. Sup. Pisa Cl. Sc. (4) 24 (1997), 133-164. Zbl0887.35062MR1475774
- [14] A. Lunardi, On the Ornstein-Uhlenbeck operator in L 2 spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. Zbl0890.35030MR1389786
- [15] A. Lunardi - V. Vespri, Generation of smoothing semigroups by elliptic operators with unbounded coefficients in Rn,, Rend. Istit. Mat. Univ. Trieste28 (1997), 251-279. Zbl0899.35027MR1602271
- [16] A. Lunardi - V. Vespri, Optimal L∞ and Schauder estimates for elliptic and parabolic operators with unbounded coefficients, In: Proc. Conf. "Reaction-diffusion systems" G. Caristi - E. Mitidieri (eds.), Lecture notes in pure and applied mathematics194, M. Dekker (1998), 217-239. Zbl0887.47034
- [17] P.A. Meyer, Note sur ler processus d'Ornstein-Uhlenbeck, Seminaire de probabilités XVI, Springer LNM920 (1982), 95-133. Zbl0481.60041MR658673
- [18] J.M.A.M. Van Neerven - J. Zabczyk, Norm discontinuity of Ornstein-Uhlenbeck semigroups, Semigroup Forum59 (1999), 389-403. Zbl0960.47024MR1847653
- [19] E.M. Stein - G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces", Princeton Univ. Press, 1971. Zbl0232.42007MR304972
- [20] E.T. Whittaker - G.N. Watson, "A course of Modem Analysis", Cambridge Univ. Press, Cambridge, 1927. JFM53.0180.04
- [21] L. Weis, The stability of positive semigroups on L p spaces, Proc. Amer. Math. Soc. 123 (1995), 3089-3094. Zbl0851.47028MR1273529
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.