Sur les séries L d’une variété algébrique

Serge Lang

Bulletin de la Société Mathématique de France (1956)

  • Volume: 84, page 385-407
  • ISSN: 0037-9484

How to cite

top

Lang, Serge. "Sur les séries $L$ d’une variété algébrique." Bulletin de la Société Mathématique de France 84 (1956): 385-407. <http://eudml.org/doc/86909>.

@article{Lang1956,
author = {Lang, Serge},
journal = {Bulletin de la Société Mathématique de France},
keywords = {number fields, function fields},
language = {fre},
pages = {385-407},
publisher = {Société mathématique de France},
title = {Sur les séries $L$ d’une variété algébrique},
url = {http://eudml.org/doc/86909},
volume = {84},
year = {1956},
}

TY - JOUR
AU - Lang, Serge
TI - Sur les séries $L$ d’une variété algébrique
JO - Bulletin de la Société Mathématique de France
PY - 1956
PB - Société mathématique de France
VL - 84
SP - 385
EP - 407
LA - fre
KW - number fields, function fields
UR - http://eudml.org/doc/86909
ER -

References

top
  1. [1] E. ARTIN, Ueber eine neue art von L-Reihen (Abh. math. Sem. Hamburg Univ., Bd. 2, 1924). 
  2. [2] E. ARTIN, Zur theorie der L-Reihen mit allgemeinen gruppencharakteren (Abh. math. Sem. Hamburg Univ., Bd. 8, 1930). Zbl56.0173.02JFM56.0173.02
  3. [3] W. L. CHOW, Abstract theory of the Picard and Albanese varieties (à paraître dans les Annals of Mathematics). 
  4. [4] W. KRULL, Galoische theorie der ganz abgeschlossene Stellenringe (Sitzungsberichte der phys.-med. Soz. zu Erlangen, Bd. 67-68, 1935-1936). Zbl0016.34101JFM63.0086.03
  5. [5] S. LANG, L-series of a covering (à paraître aux Proceedings of the National Academy, U.S.A., 1956). Zbl0071.15805MR19,320b
  6. [6] S. LANG, Unramified class field theory (à paraître dans les Annals of Mathematics, 1956). Zbl0089.26201
  7. [7] S. LANG et A. WEIL, Number of points of varieties in finite fields (Amer. J. Math., vol. 72, No 4, octobre 1954, p. 818-827). Zbl0058.27202MR16,398d
  8. [8] T. MATSUSAKA, The theorem of Bertini on linear systems in modular fields (Mem. College of Science, Univ. of Kyoto, Series A, Math., vol. 26, No 1, juillet 1950). Zbl0045.42101MR12,853b
  9. [9] M. NAGATA, On the theory of Henselian Rings (Nagoya math. J. vol. 5, 1953, p. 45-57, et vol. 7, 1954, p. 1-19). Zbl0051.02601
  10. [10] Y. NAKAI, On the genus of algebraic curves (Mem. College of Science, Univ. of Kyoto, Series A, Math., No 2, 1952). Zbl0047.39604MR14,680h
  11. [11] L. B. NISNEVIC, Ueber die Anzahl der Punkte einer algebraische Mannigfaltigkeit in einem endlichen Primkörper (en russe Doklady Akad. Nauk U.S.S.R., 1954). Zbl0057.28101
  12. [12] F. K. SCHMIDT, Die theorie der Klassenkörper... (Sitzungsberichten der phys. med. Soz. zu Erlangen, Bd. 62, 1930, p. 267-284). JFM57.0207.02
  13. [13] A. WEIL, Number of solutions of equations in finite fields (Bull. Amer. Math. Soc., vol. 55, No 5, 1949, p. 497-508). Zbl0032.39402MR10,592e
  14. [14] A. WEIL, Sur les courbes algébriques et les variétés qui s'en déduisent (Paris, Hermann, 1948). Zbl0036.16001MR10,262c
  15. [15] A. WEIL, Footnote to a recent paper (Amer. J. Math., vol. 76, No 2, 1954). Zbl0056.03702MR15,778c
  16. [16] A. WEIL, Critères d'équivalence (Math. Annalen, Bd. 128, 1954). Zbl0057.13002MR16,398e
  17. [17] E. WITT, Zyklische Körper und algebren der characteristik p vom Grad pn (J. reine angew. Math., Bd. 176, 1936). Zbl0016.05101JFM62.1112.03
  18. [18] O. ZARISKI, Pencils on an algebraic variety and a new proof of a theorem of Bertini (Trans. Amer. math. Soc., 1941). Zbl0025.21502MR2,345aJFM67.0618.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.