On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field

Chad Schoen

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 1, page 1-50
  • ISSN: 0012-9593

How to cite

top

Schoen, Chad. "On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field." Annales scientifiques de l'École Normale Supérieure 28.1 (1995): 1-50. <http://eudml.org/doc/82377>.

@article{Schoen1995,
author = {Schoen, Chad},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {codimension algebraic cycles; Griffiths group; Chow group; cycle class map; Galois cohomology; null-homologous cycles},
language = {eng},
number = {1},
pages = {1-50},
publisher = {Elsevier},
title = {On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field},
url = {http://eudml.org/doc/82377},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Schoen, Chad
TI - On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 1
SP - 1
EP - 50
LA - eng
KW - codimension algebraic cycles; Griffiths group; Chow group; cycle class map; Galois cohomology; null-homologous cycles
UR - http://eudml.org/doc/82377
ER -

References

top
  1. [A1] J. ALPERIN, Local Representation Theory (Cambridge studies in advanced math., Vol. 11, Cambridge University press, Cambridge, 1986). Zbl0593.20003MR87i:20002
  2. [A-M] M. F. ATIYAH and I. G. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley, Reading Mass., 1969. Zbl0175.03601MR39 #4129
  3. [B] S. BLOCH, Algebraic cycles and values of L-functions (J. reine und angew. Math., Vol. 350, 1984, pp. 94-108). Zbl0527.14008MR85i:11052
  4. [B1] S. BLOCH, Torsion algebraic cycles and a theorem of Roitman (Compositio Math. Vol. 39, 1979, pp. 107-127). Zbl0463.14002MR80k:14012
  5. [B2] S. BLOCH, Algebraic cycles and values of L-functions II (Duke Math. J., Vol. 52, 1985, pp. 379-397). Zbl0628.14006MR87a:14021
  6. [Be] A. BEAUVILLE, Le nombre minimum de fibres singulières d'une courbe stable sur P1, in Séminaire sur les pinceaux de courbes de genre au moins deux, L. Szpiro ed. (Astérisque, Vol. 86, 1981, pp. 97-108). Zbl0502.14009
  7. [Be2] A. BEAUVILLE, Les familles stables de courbes elliptiques sur P1 admettant quatre fibres singulières (C.R. Acad. Sci., Paris, n° 294, 1982, pp. 657-660). Zbl0504.14016MR83h:14008
  8. [Be3] A. BEAUVILLE, Le groupe de monodromie des familles universelles d'hypersurfaces et d'intersections complètes, in H. Grauert ed., Complex analysis and algebraic geometry. Proc. Conf., Goettingen 1985 (Lect. Notes Math., n° 1194, pp. 8-18, Springer, New York, 1986). Zbl0603.14011
  9. [Bi-Ku] B. BIRCH and KUYK, ed., Modular functions of one variable IV (Lect. Notes Math., n° 476, 1972). Zbl0315.14014MR51 #12708
  10. [Co-Ra] J.-L. COLLIOT-THÉLÈNE and W. RASKIND, K2-cohomology and the second Chow group (Math. Ann. n° 270, 1985, pp. 165-199). Zbl0536.14004MR86m:14005
  11. [Co-S-S] J.-L. COLLIOT-THÉLÈNE, J.-J. SANSUC and C. SOULÉ, Torsion dans le groupe de Chow de codimension deux (Duke Math. J., Vol. 50, 1983, pp. 763-801). Zbl0574.14004MR85d:14010
  12. [D] P. DELIGNE, Formes modulaires et représentations l-adiques (Séminaire Bourbaki n° 355, Lect. Notes in Math., Vol. 179, Springer Verlag, 1971, pp. 139-172). Zbl0206.49901
  13. [D2] P. DELIGNE, Variétés abéliennes ordinaires sur un corps fini (Inv. math., Vol. 8, 1969, pp. 238-243). Zbl0179.26201MR40 #7270
  14. [Fu] W. FULTON, Intersection Theory (Ergeb. Math. Grenzgeb., Vol. 2, Springer-Verlag, 1984). Zbl0541.14005MR85k:14004
  15. [Gro] B. GROSS, Representation theory and the cuspidal group of X (p) (Duke Math. J., Vol. 54, 1987, pp. 67-75). Zbl0629.14021MR89b:11052
  16. [Gr-D] A. GROTHENDIECK, rédigé par P. DELIGNE, La classe de cohomologie associée à un cycle (SGA 4 1/2, Lect. Notes Math., n° 569, 1977, pp. 129-153). Zbl0349.14012MR57 #3132
  17. [Grot] A. GROTHENDIECK, Technique de descente et théorèmes d'existence en géométrie algébrique V. Les schémas de Picard : Théorèmes d'existence (Sém. Bourbaki n° 232, 1962). Zbl0238.14014
  18. [Ha] B. HARRIS, Homological versus algebraic equivalence in a Jacobian (Proc. Nat. Acad. Sci. U.S.A., Vol. 80, 1983, pp. 1157-1158). Zbl0523.14006MR84m:14009
  19. [Ja] U. JANNSEN, Mixed motives and algebraic K-theory (Lect. Notes Math., Vol. 1400, Berlin Heidelberg New York, Springer, 1990). Zbl0691.14001MR91g:14008
  20. [La1] S. LANG, Sur les séries L d'une variété algébrique (Bull. Soc. Math. France, Vol. 84, 1956, pp. 385-407). Zbl0089.26301MR19,578c
  21. [La2] S. LANG, Elliptic Functions, Addison-Wesley, London, 1973. Zbl0316.14001MR53 #13117
  22. [Lau] G. LAUMON, Homologie étale, in Séminaire de géométrie analytique, A. Douady and J.-L. Verdier ed. (Astérisque, Vol. 36-377, 1976, pp. 163-188). Zbl0341.14006MR56 #3017
  23. [Lig] G. LIGOZAT, Courbes Modulaires de Genre 1 (Bull. Soc. Math. France, Vol. 43, Paris, 1975). Zbl0322.14011MR54 #5121
  24. [M-S] A. S. MERKUR'EV and A. A. SUSLIN, K-Cohomology of Severi-Brauer varieties and the norm residue homomorphism (Math. USSR Izvestiya, Vol. 21, 1983, pp. 307-340). Zbl0525.18008
  25. [Mi] J. MILNE, Etale Cohomology, Princeton University Press, Princeton, 1980. Zbl0433.14012MR81j:14002
  26. [Mi2] J. MILNE, Zero cycles on algebraic varieties in non-zero characteristic : Rojtman's theorem (Compositio Math., Vol. 47, 1982, pp. 271-287). Zbl0506.14006MR85b:14011
  27. [Mi3] J. MILNE, Arithmetic Duality Theorems, Academic Press, Orlando, 1986. Zbl0613.14019MR88e:14028
  28. [Mu] D. MUMFORD, Abelian Varieties, Oxford University Press, Oxford, 1970. Zbl0223.14022MR44 #219
  29. [Ne] J. NEKOVÁŘ, Kolyvagin's method for Chow groups of Kuga-Sato varieties (Inv. Math., Vol. 107, 1992, pp. 99-125). Zbl0729.14004MR93b:11076
  30. [Ogg] A. OGG, Elliptic curves and wild ramification (Amer. J. Math., Vol. 89, 1967, pp. 1-21). Zbl0147.39803MR34 #7509
  31. [Ra] W. RASKIND, W., A finiteness theorem in the Galois Cohomology of algebraic number fields (Trans. AMS, Vol. 303, 1987, pp. 743-749). Zbl0648.12009MR88m:11098
  32. [Ro] J. ROBERTS, Chow's moving lemma, in Algebraic Geometry, F. Oort ed., Wolters-Noordhoff Publ. Groningen, 1972, pp. 89-96. MR52 #3154
  33. [Roi] A. A. ROITMAN, The torsion of the group of 0-cycles modulo rational equivalence (Ann. of Math., Vol. 111, 1980, pp. 553-569). Zbl0504.14006MR81g:14003
  34. [Sch-BB] C. SCHOEN, Complex multiplication cycles and the conjecture of Beilinson and Bloch (Trans. A.M.S., Vol. 339, 1993, pp. 87-115). Zbl0811.14003MR93k:14011
  35. [Sch-CM] C. SCHOEN, Complex multiplication cycles on elliptic modular threefolds (Duke Math J., Vol. 53, 1986, pp. 771-794). Zbl0623.14018MR87m:14041
  36. [Sch-FP] C. SCHOEN, On fiber products of rational elliptic surfaces with section (Math. Z., Vol. 197, 1988, pp. 177-199). Zbl0631.14032MR89c:14062
  37. [Sch-MR] C. SCHOEN, On certain modular representations in the cohomology of algebraic curves (J. of Algebra, Vol. 135, 1990, pp. 1-18). Zbl0727.20033MR91h:14021
  38. [Sch-T] C. SCHOEN, Some examples of torsion in the Griffiths group (Math. Ann., Vol. 293, 1992, pp. 651-679). Zbl0790.14006MR94d:14009
  39. [Se1] J. P. SERRE, Linear representations of finite groups (Graduate Texts in Math., Vol. 42, Springer-Verlag, New York, 1977). Zbl0355.20006MR56 #8675
  40. [Se2] J. P. SERRE, Local Fields (Graduate Texts in Math., Vol. 67, Springer-Verlag, New York, 1979). Zbl0423.12016MR82e:12016
  41. [Sh] G. SHIMURA, On elliptic curves with complex multiplication as factors of Jacobians of modular function fields (Nagoya Math. J., Vol. 43, 1971, pp. 199-208). Zbl0225.14015MR45 #5111
  42. [Sh2] G. SHIMURA, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971. Zbl0221.10029
  43. [Si1] J. SILVERMAN, The Arithmetic of elliptic curves, Springer Verlag, 1986. Zbl0585.14026MR87g:11070
  44. [So] C. SOULÉ, Groupes de Chow et K-théorie de variétés sur un corps fini (Math. Ann., Vol. 268, 1984, pp. 317-345). Zbl0573.14001MR86k:14017
  45. [St] J. STEENBRINK, Limits of Hodge structures (Invent. Math. Vol. 31, 1976, pp. 229-257). Zbl0303.14002MR55 #2894
  46. [Ste] N. M. STEPHENS, The diophantine equation x3 + y3 = Dz3 and the conjectures of Birch and Swinnerton-Dyer (J. reine angew. Math., Vol. 231, 1968, pp. 121-162). Zbl0221.10023MR37 #5225
  47. [Su] N. SUWA, Sur l'image de l'application d'Abel-Jacobi de Bloch (Bull. Soc. math. France, Vol. 116, 1988, pp. 69-101). Zbl0686.14006MR89j:14003
  48. [Ta1] J. TATE, Relations between K2 and Galois cohomology (Invent. Math., Vol. 36, 1976, pp. 257-274). Zbl0359.12011MR55 #2847
  49. [Ta2] J. TATE, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après Honda) (Sém. Bourbaki, n° 352, 1968). Zbl0212.25702
  50. [Ta3] J. TATE, Endomorphisms of Abelian Varieties (Inv. Math., Vol. 2, 1966, pp. 134-144). Zbl0147.20303MR34 #5829
  51. [Wa] W. WATERHOUSE, Abelian varieties over finite fields (Ann. Sci. École Norm. Sup., n° 2, 1969, pp. 521-560). Zbl0188.53001MR42 #279
  52. [Za] J. G. ZARHIN, Endomorphisms of abelian varieties over fields of finite characteristic (Math. USSR Izvest., Vol. 9, 1975, pp. 255-260). Zbl0345.14014MR51 #8114

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.