Application de la suite spectrale d’Hodgkin au calcul de la -théorie des variétés de Stiefel

André Roux

Bulletin de la Société Mathématique de France (1971)

  • Volume: 99, page 345-368
  • ISSN: 0037-9484

How to cite

top

Roux, André. "Application de la suite spectrale d’Hodgkin au calcul de la $K$-théorie des variétés de Stiefel." Bulletin de la Société Mathématique de France 99 (1971): 345-368. <http://eudml.org/doc/87174>.

@article{Roux1971,
author = {Roux, André},
journal = {Bulletin de la Société Mathématique de France},
language = {fre},
pages = {345-368},
publisher = {Société mathématique de France},
title = {Application de la suite spectrale d’Hodgkin au calcul de la $K$-théorie des variétés de Stiefel},
url = {http://eudml.org/doc/87174},
volume = {99},
year = {1971},
}

TY - JOUR
AU - Roux, André
TI - Application de la suite spectrale d’Hodgkin au calcul de la $K$-théorie des variétés de Stiefel
JO - Bulletin de la Société Mathématique de France
PY - 1971
PB - Société mathématique de France
VL - 99
SP - 345
EP - 368
LA - fre
UR - http://eudml.org/doc/87174
ER -

References

top
  1. [1] ATIYAH (M.). — K-theory. — New York, Amsterdam, W. A. Benjamin, 1967. Zbl0159.53302MR36 #7130
  2. [2] ATIYAH (M.) and HIRZEBRUCH (F.). — Vector bundles and homogeneous spaces, Differential geometry, p. 7-38. — Providence, American mathematical Society, 1961 (Proceedings of the Symposia of pure Mathematics, 3). Zbl0108.17705MR25 #2617
  3. [3] BOTT (R.). — Lectures on K (X). — New York, Amsterdam, W. A. Benjamin, 1969 (Mathematics Lecture Note Series). Zbl0194.23904MR41 #2667
  4. [4] CARTAN (H.) and EILENBERG (S.). — Homological algebra. — Princeton, Princeton University Press, 1956 (Princeton mathematical Series, 19). Zbl0075.24305MR17,1040e
  5. [5] GITLER (S.) and KEE YUEN LAM. — The K-theory of Stiefel manifolds, The Steenrod algebra and its applications, p. 35-66. — Berlin, Springer-Verlag, 1970 (Lecture Notes in Mathematics, 168). Zbl0216.45002
  6. [6] HODGKIN (L.). — An equivalent formula in K-theory, Preprint of the University of Warwick. 
  7. [7] HODGKIN (L.). — On the K-theory of Lie groups, Topology, t. 6, 1967, p. 1-36. Zbl0186.57103MR35 #4950
  8. [8] HUSEMOLLER (D.). — Fibre bundles. — New York, McGraw-Hill Book Company, 1966 (McGraw-Hill Series in higher Mathematics). Zbl0144.44804MR37 #4821
  9. [9] LAZAROV (C.). — Secondary characteristic classes in K-theory, Trans. Amer. math. Soc., t. 136, 1968, p. 391-412. Zbl0208.51505MR38 #3858
  10. [10] SMITH (L.). — Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. math. Soc., t. 129, 1967, p. 58-93. Zbl0177.51402MR35 #7337

NotesEmbed ?

top

You must be logged in to post comments.