Diagonalizably linearized coherent sheaves

H. Andreas Nielsen

Bulletin de la Société Mathématique de France (1974)

  • Volume: 102, page 85-97
  • ISSN: 0037-9484

How to cite

top

Nielsen, H. Andreas. "Diagonalizably linearized coherent sheaves." Bulletin de la Société Mathématique de France 102 (1974): 85-97. <http://eudml.org/doc/87241>.

@article{Nielsen1974,
author = {Nielsen, H. Andreas},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
pages = {85-97},
publisher = {Société mathématique de France},
title = {Diagonalizably linearized coherent sheaves},
url = {http://eudml.org/doc/87241},
volume = {102},
year = {1974},
}

TY - JOUR
AU - Nielsen, H. Andreas
TI - Diagonalizably linearized coherent sheaves
JO - Bulletin de la Société Mathématique de France
PY - 1974
PB - Société mathématique de France
VL - 102
SP - 85
EP - 97
LA - eng
UR - http://eudml.org/doc/87241
ER -

References

top
  1. [1] ATIYAH (M. F.) and SEGAL (G. B.).— The index of elliptic operators, II, Annales of Math., series 2, t. 87, 1968, p. 531-545. Zbl0164.24201MR38 #5244
  2. [2] BEAUVILLE (A.).— Formules des points fixes en cohomologie cohérente, Séminaire de Géométrie algébrique, Orsay, 1970-1971. 
  3. [3] DEMAZURE (M.).— Structures algébriques, Cohomologie des groupes űSGA 3: Schémas en groupes, IƇ, p. 1-37 — Berlin, Springer-Verlag, 1970 (Lecture Notes in Mathematics, 151). 
  4. [4] DEMAZURE (M.).— Sur la formule des caractères de H. Weyl, Invent. Math., Berlin, t. 9, 1970, p. 249-252. Zbl0189.21403MR44 #5321
  5. [5] DONOVAN (P.).— The Lefschetz-Riemann-Roch formula, Bull. Soc. math. France, t. 97, 1969, p. 257-273. Zbl0185.49401MR41 #8433
  6. [6] GIORGIUTTI (I.).— Groupes de Grothendieck, Ann. Fac. Sc. Toulouse, série 4, t. 26, 1962, p. 151-206. Zbl0223.20008MR36 #5192
  7. [7] GROTHENDIECK (A.).— La théorie des classes de Chern, Bull. Soc. math. France, t. 86, 1958, p. 137-154. Zbl0091.33201MR22 #6818
  8. [8] IVERSEN (B.).— Noetherian grades modules, I.— Aarhus, Aarhus Universitet, Matematisk Institut, 1972 (Aarhus University, Preprint Series, 29). 
  9. [9] IVERSEN (B.).— A fixed point formula for action of tori on algebraic varieties, Invent. Math., Berlin, t. 16, 1972, p. 229-236. Zbl0246.14010MR45 #8656
  10. [10] KAMBAYASHI (T.).— Projective representation of algebraic linear groups of transformations, Amer. J. Math., t. 88, 1966, p. 199-205. Zbl0141.18303MR34 #5826
  11. [11] MANIN (Ju. I.).— Lectures on the K-functor in algebraic geometry, Russian Math. Surveys, t. 24, 1969, p. 1-89. Zbl0204.21302MR42 #265
  12. [12] MUMFORD (D.).— Geometric invariant theory.— Berlin, Springer-Verlag, 1965 (Ergebnisse der Mathematik, 34). Zbl0147.39304MR35 #5451
  13. [13] SERRE (J.-P.).— Faisceaux algébriques cohérents, Annals of Math., series 2, t. 61, 1955, p. 197-278. Zbl0067.16201MR16,953c
  14. [14] SGA 6 : Théorie des intersections et théorème de Riemann-Roch.— Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 225). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.