Algebraic integers whose conjugates lie near the unit circle

Cameron L. Stewart

Bulletin de la Société Mathématique de France (1978)

  • Volume: 106, page 169-176
  • ISSN: 0037-9484

How to cite

top

Stewart, Cameron L.. "Algebraic integers whose conjugates lie near the unit circle." Bulletin de la Société Mathématique de France 106 (1978): 169-176. <http://eudml.org/doc/87321>.

@article{Stewart1978,
author = {Stewart, Cameron L.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Location of Algebraic Integers; Unit Circle},
language = {eng},
pages = {169-176},
publisher = {Société mathématique de France},
title = {Algebraic integers whose conjugates lie near the unit circle},
url = {http://eudml.org/doc/87321},
volume = {106},
year = {1978},
}

TY - JOUR
AU - Stewart, Cameron L.
TI - Algebraic integers whose conjugates lie near the unit circle
JO - Bulletin de la Société Mathématique de France
PY - 1978
PB - Société mathématique de France
VL - 106
SP - 169
EP - 176
LA - eng
KW - Location of Algebraic Integers; Unit Circle
UR - http://eudml.org/doc/87321
ER -

References

top
  1. [1] BLANKSBY (P. E.) and MONTGOMERY (H. L.). — Algebraic integers near the unit circle, Acta Arithm., Warszawa, t. 28, 1971, p. 355-369. Zbl0221.12003MR45 #5082
  2. [2] BOYD (D. W.). — Small Salem numbers, Duke math. J., t. 44, 1977, p. 315-328. Zbl0353.12003MR56 #11952
  3. [3] DOBROWOLSKI (E.). — On the maximal modulus of conjugates of an algebraic integer, Bull. Acad. polon. Sc. (à paraître). Zbl0393.12003
  4. [4] KRONECKER (L.). — Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. für reine und angew. Math., t. 53, 1857, p. 173-175. 
  5. [5] LEHMER (D. H.). — Factorization of certain cyclotomic functions, Annals of Math., Series 2, t. 34, 1933, p. 461-479. Zbl0007.19904JFM59.0933.03
  6. [6] MIGNOTTE (M.) and WALDSCHMIDT (M.). — Linear forms in two logarithms and Schneider's method, Math. Annalen, t. 231, 1978, p. 241-267. Zbl0349.10029MR57 #242
  7. [7] SALEM (R.). — A remarkable class of algebraic integers. Proof of a conjecture o Vijayaraghavan, Duke math. J., t. 11, 1944, p. 103-108. Zbl0063.06657MR5,254a
  8. [8] SIEGEL (C. L.). — Algebraic integers whose conjugates lie in the unit circle, Duke math. J., t. 11, 1944, p. 597-602. Zbl0063.07005MR6,39b
  9. [9] SMYTH (C. J.). — On the product of the conjugates outside the unit circle of an algebraic integer, Bull. London math. Soc., t. 3, 1971, p. 169-175. Zbl0235.12003MR44 #6641
  10. [10] WALDSCHMIDT (M.). — Nombres transcendants. — Berlin, Springer-Verlag, 1974 (Lecture Notes in Mathematics, 402). Zbl0302.10030

Citations in EuDML Documents

top
  1. Artūras Dubickas, On a conjecture of A. Schinzel and H. Zassenhaus
  2. Maurice Mignotte, Entiers algébriques dont les conjugués sont proches du cercle unité
  3. D. W. Masser, Small values of the quadratic part of the Néron-Tate height on an abelian variety
  4. Artūras Dubickas, The mean values of logarithms of algebraic integers
  5. Paul Voutier, An effective lower bound for the height of algebraic numbers
  6. Joseph H. Silverman, Lehmer’s conjecture for polynomials satisfying a congruence divisibility condition and an analogue for elliptic curves

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.