The mean values of logarithms of algebraic integers
Journal de théorie des nombres de Bordeaux (1998)
- Volume: 10, Issue: 2, page 301-313
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDubickas, Artūras. "The mean values of logarithms of algebraic integers." Journal de théorie des nombres de Bordeaux 10.2 (1998): 301-313. <http://eudml.org/doc/248169>.
@article{Dubickas1998,
abstract = {Let $\alpha $ be an algebraic integer of degree $d$ with conjugates $\alpha _1 = \alpha , \alpha _2, \dots , \alpha _d$. In the paper we give a lower bound for the mean value\begin\{equation*\} M\_p(\alpha )=\@root p \of \{\frac\{1\}\{d\} \sum ^\{d\}\_\{i=1\}|\log |\alpha \_i||^p\}\end\{equation*\}when $\alpha $ is not a root of unity and $p > 1$.},
author = {Dubickas, Artūras},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Mahler's measure; logarithms of algebraic integers; mean values of logarithms},
language = {eng},
number = {2},
pages = {301-313},
publisher = {Université Bordeaux I},
title = {The mean values of logarithms of algebraic integers},
url = {http://eudml.org/doc/248169},
volume = {10},
year = {1998},
}
TY - JOUR
AU - Dubickas, Artūras
TI - The mean values of logarithms of algebraic integers
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 2
SP - 301
EP - 313
AB - Let $\alpha $ be an algebraic integer of degree $d$ with conjugates $\alpha _1 = \alpha , \alpha _2, \dots , \alpha _d$. In the paper we give a lower bound for the mean value\begin{equation*} M_p(\alpha )=\@root p \of {\frac{1}{d} \sum ^{d}_{i=1}|\log |\alpha _i||^p}\end{equation*}when $\alpha $ is not a root of unity and $p > 1$.
LA - eng
KW - Mahler's measure; logarithms of algebraic integers; mean values of logarithms
UR - http://eudml.org/doc/248169
ER -
References
top- [1] D. Bertrand, Duality on tori and multiplicative dependence relations. J. Austral. Math. Soc. (to appear). Zbl0886.11035MR1433209
- [2] P.E. Blanksby, H.L. Montgomery, Algebraic integers near the unit circle. Acta Arith.18 (1971), 355-369. Zbl0221.12003MR296021
- [3] D.C. Cantor, E.G. Straus, On a conjecture of D.H.Lehmer. Acta Arith.42 (1982), 97-100. Zbl0504.12002MR679001
- [4] E. Dobrowolski, On a question of Lehmer and the number of irreducibile factors of a polynomial. Acta Arith.34 (1979), 391-401. Zbl0416.12001MR543210
- [5] A. Dubickas, On a conjecture of Schinzel and Zassenhaus. Acta Arith.63 (1993), 15-20. Zbl0777.11039MR1201616
- [6] A. Dubickas, On the average difference between two conjugates of an algebraic number. Liet. Matem. Rink.35 (1995), 415-420. Zbl0862.11058MR1407440
- [7] M. Langevin, Solution des problèmes de Favard. Ann. Inst. Fourier38 (1988), no. 2, 1-10. Zbl0634.12002MR949008
- [8] D.H. Lehmer, Factorization of certain cyclotomic functions. Ann. of Math.34 (1933), 461-479. Zbl0007.19904MR1503118JFM59.0933.03
- [9] R. Louboutin, Sur la mesure de Mahler d'un nombre algébrique. C.R.Acad. Sci. Paris296 (1983), 707-708. Zbl0557.12001MR706663
- [10] E.M. Matveev, A connection between Mahler measure and the discriminant of algebraic numbers. Matem. Zametki59 (1996), 415-420 (in Russian). Zbl0879.11056MR1399967
- [11] M. Meyer, Le problème de Lehmer: méthode de Dobrowolski et lemme de Siegel "à la Bombieri-Vaaler". Publ. Math. Univ. P. et M. Curie (Paris VI), 90, Problèmes Diophantiens (1988-89), No.5, 15 p.
- [12] M. Mignotte, M. Waldschmidt, On algebraic numbers of small height: linear forms in one logarithm. J. Number Theory47 (1994), 43-62. Zbl0801.11033MR1273455
- [13] A. Schinzel, H. Zassenhaus, A refinement of two theorems of Kronecker. Michigan Math. J.12 (1965), 81-85. Zbl0128.03402MR175882
- [14] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Zeitschrift1 (1918), 377-402. Zbl46.0128.03MR1544303JFM46.0128.03
- [15] C.L. Siegel, The trace of totally positive and real algebraic integers. Ann. of Math.46 (1945), 302-312. Zbl0063.07009MR12092
- [16] C.J. Smyth, On the product of the conjugates outside the unit circle of an algebraic integer. Bull. London Math. Soc.3 (1971), 169-175. Zbl0235.12003MR289451
- [17] C.J. Smyth, The mean values of totally real algebraic integers. Math. Comp.42 (1984), 663-681. Zbl0536.12006MR736460
- [18] C.L. Stewart, Algebraic integers whose conjugates lie near the unit circle. Bull. Soc. Math. France106 (1978), 169-176. Zbl0396.12002MR507748
- [19] P. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arith.74 (1996), 81-95. Zbl0838.11065MR1367580
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.