Espaces fonctionnels et théorèmes de I. Namioka

Jean-Pierre Troallic

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 127-137
  • ISSN: 0037-9484

How to cite

top

Troallic, Jean-Pierre. "Espaces fonctionnels et théorèmes de I. Namioka." Bulletin de la Société Mathématique de France 107 (1979): 127-137. <http://eudml.org/doc/87340>.

@article{Troallic1979,
author = {Troallic, Jean-Pierre},
journal = {Bulletin de la Société Mathématique de France},
keywords = {dynamical systems; transformation; groups and semigroups; weakly compact subset; Banach space; distal semigroup},
language = {fre},
pages = {127-137},
publisher = {Société mathématique de France},
title = {Espaces fonctionnels et théorèmes de I. Namioka},
url = {http://eudml.org/doc/87340},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Troallic, Jean-Pierre
TI - Espaces fonctionnels et théorèmes de I. Namioka
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 127
EP - 137
LA - fre
KW - dynamical systems; transformation; groups and semigroups; weakly compact subset; Banach space; distal semigroup
UR - http://eudml.org/doc/87340
ER -

References

top
  1. [1] BOURBAKI (N.). — Topologie générale. Chap. 1-2. — Paris, Hermann, 1965 (Act. scient. et ind., 1142, Bourbaki, 2). Zbl0102.37603
  2. [2] BOURBAKI (N.). — Topologie générale. Chap. 9. — Paris, Hermann, 1958 (Act. scient. et ind., 1045 ; Bourbaki, 8). 
  3. [3] BOURBAKI (N.). — Topologie générale. Chap. 10. — Paris, Hermann, 1967 (Act. scient. et ind., 1084 ; Bourbaki, 10). 
  4. [4] BOURBAKI (N.). — Espaces vectoriels topologiques. Chap. 4. — Paris, Hermann, 1967 (Act. scient. et ind., 1229 ; Bourbaki, 18). 
  5. [5] ELLIS (R.). — Locally compact transformation groups, Duke math. J., t. 24, 1957, p. 119-125. Zbl0079.16602MR19,561b
  6. [6] ELLIS (R.). — A note on the continuity of the inverse. Proc. Amer. math. Soc., t. 8, 1957, p. 372-373. Zbl0079.04104MR18,745d
  7. [7] ELLIS (R.). — Lectures on topological dynamics. — New York, Benjamin, 1969 (Mathematics Lecture Note Series). Zbl0193.51502MR42 #2463
  8. [8] FURSTENBERG (H.). — The structure of distal flows, Amer. J. Math., t. 85, 1963, p. 477-515. Zbl0199.27202MR28 #602
  9. [9] GLASNER (S.). — Proximal flows. — Berlin and New York, Springer Verlag, 1976 (Lecture Notes in Mathematics, 517). Zbl0322.54017MR57 #13890
  10. [10] GROTHENDIECK (A.). — Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., t. 74, 1952, p. 168-186. Zbl0046.11702MR13,857e
  11. [11] HAHN (F.). — A fixed-point theorem, Math. Systems Theory, t. 1, 1968, p. 55-57. Zbl0143.36901MR34 #8202
  12. [12] HANSEL (G.) et TROALLIC (J.-P.). — Démonstration du théorème de Ryll-Nardzewski par extension de la méthode de F. Hahn, C. R. Acad. Sc. Paris, t. 282, 1976 Série A, p. 857-859. Zbl0335.47038MR54 #8602
  13. [13] MAYNARD (H. B.). — A geometrical characterization of Banach spaces with the Radon-Nikodym property, Trans. Amer. math. Soc., t. 185, 1973, p. 493-500. Zbl0278.46040MR52 #6382
  14. [14] NAMIOKA (I.) and ASPLUND (E.). — A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. math. Soc., t. 73, 1967, p. 443-445. Zbl0177.40404MR35 #799
  15. [15] NAMIOKA (I.). — Right topological groups, distal flows, and a fixed point theorem, Math. Systems Theory, t. 6, 1972, p. 193-209. Zbl0239.22001MR47 #5166
  16. [16] NAMIOKA (I.). — Separate continuity and joint continuity, Pacific. J. of Math., t. 51, 1974, p. 515-531. Zbl0294.54010MR51 #6693
  17. [17] RYLL-NARDZEWSKI (C.). — On fixed points of semi-groups of endomorphisms of linear spaces, "Proceedings of the 5th Berkeley Symposium on mathematical Statistics and Probability", 1965-1966 [Berkeley], vol. 2, part 1, p. 55-61. — Berkeley, University of California Press, 1967. Zbl0189.17501
  18. [18] TROALLIC (J.-P.). — Fonctions à valeurs dans des espaces fonctionnels généraux : Théorèmes de R. Ellis et de I. Namioka, C. R. Acad. Sc. Paris., t. 287, 1978, Série A, p. 63-66. Zbl0394.54008MR80d:54012
  19. [19] VEECH (W. A.). — A fixed point theorem-free approach to weak almost periodicity, Trans. Amer. math. Soc., t. 177, 1973, p. 353-362. Zbl0286.43009MR49 #7998

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.