On the Gel'fand-Kirillov conjecture for induced ideals in the semisimple case

Anthony Joseph

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 139-159
  • ISSN: 0037-9484

How to cite

top

Joseph, Anthony. "On the Gel'fand-Kirillov conjecture for induced ideals in the semisimple case." Bulletin de la Société Mathématique de France 107 (1979): 139-159. <http://eudml.org/doc/87341>.

@article{Joseph1979,
author = {Joseph, Anthony},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Weyl Algebra; Primitive Ideals; Universal Enveloping Algebra; Ring Of Fractions; Gelfand-Kirillov Dimension; Complex Semisimple Lie Algebra},
language = {eng},
pages = {139-159},
publisher = {Société mathématique de France},
title = {On the Gel'fand-Kirillov conjecture for induced ideals in the semisimple case},
url = {http://eudml.org/doc/87341},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Joseph, Anthony
TI - On the Gel'fand-Kirillov conjecture for induced ideals in the semisimple case
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 139
EP - 159
LA - eng
KW - Weyl Algebra; Primitive Ideals; Universal Enveloping Algebra; Ring Of Fractions; Gelfand-Kirillov Dimension; Complex Semisimple Lie Algebra
UR - http://eudml.org/doc/87341
ER -

References

top
  1. [1] BORHO (W.). — Berechnung der Gel'fand-Kirillov-Dimension bei induzierten Darstellungen, Math. Annalen, t. 225, 1977, p. 177-194. Zbl0346.17012MR56 #12085
  2. [2] BORHO (W.). — Primitive vollprime Ideale in der Einhüllenden von so (5, C), J. of Algebra, t. 43, 1976, p. 619-654. Zbl0346.17013MR54 #10358
  3. [3] BORHO (W.), GABRIEL (P.) und RENTSCHLER (R.). — Primideale in Einhüllenden ausflösbarer Lie-algebren. - Berlin, Springer-Verlag, 1973 (Lecture Notes in Mathematics, 357). Zbl0293.17005MR51 #12965
  4. [4] BORHO (W.) und JANTZEN (J. C.). — Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math., Berlin, t. 39, 1977, p. 1-53. Zbl0327.17002MR56 #12079
  5. [5] BORHO (W.) und KRAFT (H.). — Über die Gel'fand-Kirillov-Dimension, Math. Annalen, t. 220, 1976, p. 1-24. Zbl0306.17005MR54 #367
  6. [6] CONZE (N.). — Algèbres d'opérateurs différentiels et quotients des algèbres enveloppantes, Bull. Soc. math. Fr., t. 102, 1974, p. 379-415. Zbl0298.17012MR51 #10414
  7. [7] CONZE-BERLINE (N.) et DUFLO (M.). — Sur les représentations induites des groupes semi-simples complexes, Compos. Math., Groningen, t. 34, 1977, p. 307-336. Zbl0389.22016MR55 #12872
  8. [8] DIXMIER (J.). — Algèbres enveloppantes, Paris, Gauthier-Villars, 1974 (Cahiers scientifiques, 37). Zbl0308.17007MR58 #16803a
  9. [9] DIXMIER (J.), DUFLO (M.) et VERGNE (M.). — Sur la représentation coadjointe d'une algèbre de Lie, Compos. Math., Groningen, t. 29, 1974, p. 309-323. Zbl0296.17009MR51 #630
  10. [10] DIXMIER (J.). — Polarisations dans les algèbres de Lie, II, Bull. Soc. math. France, t. 104, 1976, p. 145-164. Zbl0335.17002MR54 #12843
  11. [11] DUFLO (M.). — Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple, Annals of Math. Series 2, t. 105, 1977, p. 107-120. Zbl0346.17011MR55 #3013
  12. [12] GEL'FAND (I. M.) and KIRILLOV (A. A.). — On fields connected with the enveloping algebras of Lie algebras [in Russian], Dokl. Nauk S.S.S.R., t. 167, 1966, p. 503-505. Zbl0149.02903MR33 #4108
  13. [13] GEL'FAND (I. M.) and KIRILLOV (A. A.). — Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. — Paris, Institut des hautes Études scientifiques, 1966 (Publications mathématiques, 31, p. 5-19). Zbl0144.02104MR34 #7731
  14. [14] GEL'FAND (I. M.) and KIRILLOV (A. A.). — The structure of the Lie field connected with a semisimple decomposable Lie algebra [in Russian], Funkcional Anal. i Prilozen., t. 3, 1969, p. 726. Zbl0244.17007MR39 #2827
  15. [15] JANTZEN (J. C.). — Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Annalen, t. 226, 1977, p. 53-65. Zbl0372.17003MR55 #12783
  16. [16] JOSEPH (A.). — The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. scient. Ec. Norm. Sup., 4e serie, t. 9, 1976, p. 1-30. Zbl0346.17008MR53 #8168
  17. [17] JOSEPH (A.). — The algebraic method in representation theory (enveloping algebras), "Group theoretical methods in physics" [4, 1975, Nijmegen], p. 95-109. - Berlin, Springer-Verlag, 1976 (Lecture Notes in Physics, 50). Zbl0374.17003
  18. [18] JOSEPH (A.). A generalization of the Gel'fand-Kirillov conjecture, Amer. J. of Math., t. 99, 1977, p. 1151-1165. Zbl0378.17005MR57 #391
  19. [19] JOSEPH (A.). — Proof of the Gel'fand-Kirillov conjecture for solvable Lie algebras, Proc. Amer. math. Soc., t. 45, 1974, p. 1-10. Zbl0293.17006MR52 #522
  20. [20] JOSEPH (A.). — A preparation theorem for the prime spectrum of a semisimple Lie algebra, J. of Algebra, t. 48, 1977, p. 241-289. Zbl0405.17007MR56 #12082
  21. [21] JOSEPH (A.). — Primitive ideals in the enveloping algebras of sl (3) and sp (4), 1976 (unpublished). 
  22. [22] JOSEPH (A.). — Sur les algèbres de Weyl, Lecture notes, 1974, (unpublished). 
  23. [23] JOSEPH (A.). — Towards the Jantzen conjecture, Compos. Math., Groningen (in the press). Zbl0424.17004
  24. [24] JOSEPH (A.). — Gel'fand-Kirillov dimension for the annihilators of simple quotients of Verma modules. J. London math. Soc., t. 18, 1978, p. 50-60. Zbl0401.17007MR58 #22202
  25. [25] MCCONNELL (J. C.). — Representations of solvable Lie algebras and the Gel'fand-Kirillov conjecture, Proc. London math. Soc., Series 3, t. 29, 1974, p. 453-484. Zbl0323.17005MR50 #9997
  26. [26] NGHIÊM (X. H.). — Sur certains sous-corps commutatifs du corps enveloppant d'une algèbre de Lie résoluble, Bull. Sc. math., 2e série, t. 96, 1972, p. 111-128. Zbl0239.17007
  27. [27] NGHIÊM (X. H.). — Sur certaines représentations d'une algèbre de Lie résoluble complexe, Bull. Sc. math., 2e série, t. 97, 1973, p. 105-128. Zbl0275.17003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.