The resolvent for a convolution kernel satisfying the domination principle

Christian Berg; Jesper Laub

Bulletin de la Société Mathématique de France (1979)

  • Volume: 107, page 373-384
  • ISSN: 0037-9484

How to cite

top

Berg, Christian, and Laub, Jesper. "The resolvent for a convolution kernel satisfying the domination principle." Bulletin de la Société Mathématique de France 107 (1979): 373-384. <http://eudml.org/doc/87356>.

@article{Berg1979,
author = {Berg, Christian, Laub, Jesper},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convolution kernel; domination principle; locally compact abelian group; Riesz decomposition theorem; measurable kernels},
language = {eng},
pages = {373-384},
publisher = {Société mathématique de France},
title = {The resolvent for a convolution kernel satisfying the domination principle},
url = {http://eudml.org/doc/87356},
volume = {107},
year = {1979},
}

TY - JOUR
AU - Berg, Christian
AU - Laub, Jesper
TI - The resolvent for a convolution kernel satisfying the domination principle
JO - Bulletin de la Société Mathématique de France
PY - 1979
PB - Société mathématique de France
VL - 107
SP - 373
EP - 384
LA - eng
KW - convolution kernel; domination principle; locally compact abelian group; Riesz decomposition theorem; measurable kernels
UR - http://eudml.org/doc/87356
ER -

References

top
  1. [1] DENY (J.).— Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 643-667. Zbl0101.08302MR25 #3189
  2. [2] ITÔ (M.).— Sur le principe de domination pour les noyaux de convolution, Nagoya math. J., t. 50, 1973, p. 149-173. Zbl0287.43002MR49 #615
  3. [3] ITÔ (M.).— Caractérisation du principe de domination pour les noyaux de convolution non-bornés, Nagoya math. J., t. 57, 1975, p. 167-197. Zbl0349.31011MR52 #3569
  4. [4] ITÔ (M.).— Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima math. J., t. 5, 1975, p. 293-350. Zbl0335.31007MR52 #8469
  5. [5] ITÔ (M.).— Une caractérisation du principe de domination pour les noyaux de convolution, Japan. J. Math., t. 1, 1975, p. 5-35. Zbl0324.31006MR53 #3336
  6. [6] KISHI (M.).— Positive idempotents on a locally compact abelian group, Kodai math. Sem. Rep., t. 27, 1976, p. 181-187. Zbl0326.43002MR53 #5913
  7. [7] LAUB (J.).— On unicity of the Riesz decomposition of an excessive measure, Math. Scand. t. 43, 1978, p. 141-156. Zbl0401.43002MR82b:31018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.