L’équation ¯ dans les ouverts pseudo-convexes des espaces DFN

Jean-François Colombeau; Bernard Perrot

Bulletin de la Société Mathématique de France (1982)

  • Volume: 110, page 15-26
  • ISSN: 0037-9484

How to cite

top

Colombeau, Jean-François, and Perrot, Bernard. "L’équation $\bar{\partial }$ dans les ouverts pseudo-convexes des espaces DFN." Bulletin de la Société Mathématique de France 110 (1982): 15-26. <http://eudml.org/doc/87411>.

@article{Colombeau1982,
author = {Colombeau, Jean-François, Perrot, Bernard},
journal = {Bulletin de la Société Mathématique de France},
keywords = {d-bar-equation; strong dual of a complex nuclear Frechet space; DFN space; pseudo-convex open subset; infinite dimensional holomorphy},
language = {fre},
pages = {15-26},
publisher = {Société mathématique de France},
title = {L’équation $\bar\{\partial \}$ dans les ouverts pseudo-convexes des espaces DFN},
url = {http://eudml.org/doc/87411},
volume = {110},
year = {1982},
}

TY - JOUR
AU - Colombeau, Jean-François
AU - Perrot, Bernard
TI - L’équation $\bar{\partial }$ dans les ouverts pseudo-convexes des espaces DFN
JO - Bulletin de la Société Mathématique de France
PY - 1982
PB - Société mathématique de France
VL - 110
SP - 15
EP - 26
LA - fre
KW - d-bar-equation; strong dual of a complex nuclear Frechet space; DFN space; pseudo-convex open subset; infinite dimensional holomorphy
UR - http://eudml.org/doc/87411
ER -

References

top
  1. [1] BONIC (R.) et FRAMPTON (J.). — Smooth functions on Banach manifolds, journal of Math. and Mech., t. 15, 1966, p. 877-898. Zbl0143.35202MR33 #6647
  2. [2] COLOMBEAU (J. F.). — Sur les applications différentiables et analytiques au sens de J. S. e Silva. Portugaliae Mathematica, vol. 36, fasc. 2, 1977, p. 103-118. Zbl0449.46039MR81g:46054
  3. [3] COLOMBEAU (J. F.). — Spaces of Cx mappings in infinitely many dimension and applications, Bordeaux, 1977 (preprint). 
  4. [4] COLOMBEAU (J. F.) et MFISI (R.). — Cx functions on locally convex and on bornological vector spaces. Functional Analysis. Holomorphy and Approximation Theory, [MACHADO (S.)], Ed., Lecture Notes in Math. Springer, n° 843, 1981, p. 195-216. Zbl0494.46042
  5. [5] COLOMBEAU (J. F.) et PERROT (B.). — Reflexivity and kernels in infinite dimensional holomorphy, Portugaliae Mathematica, vol. 46, n° 3-4, 1977, p. 291-300. Zbl0441.46021MR82e:46063
  6. [6] COLOMBEAU (J. F.) et PERROT (B.). — The ∂ equation in DFN spaces, Journal of Math. Analysis and Application, vol. 78, n° 2, 1980, p. 466-487. Zbl0455.46045MR82c:32019
  7. [7] COLOMBEAU (J. F.), GAY (R.) et PERROT (B.). — Division by holomorphic functions and convolution equations in infinite dimensions. Transactions of the A.M.S., vol. 264, n° 2, 1981, p. 381-391. Zbl0494.46052MR82e:46060
  8. [8] GRUMAN (L.). — The Lévi problem in certain infinite dimensional vector spaces, Illinois Journal of Math., t. 18, 1974, p. 20-26. Zbl0276.32017MR50 #993
  9. [9] GRUMAN (L.) et KISELMAN (C. O.). — Le problème de Lévi dans les espaces de Banach à base, C. R. Acad. Sc. Paris, t. 274, série A, 1972, p. 1296-1298. Zbl0243.32017MR45 #3759
  10. [10] HENRICH (C. J.). — The ∂ equation with polynomial growth on a Hilbert space, Duke Math. Journal, vol. 40, n° 2, 1973, p. 279-306. Zbl0261.35063MR47 #9279
  11. [11] HOGBE-NLEND (H.). — Théorie des Bornologies et Applications, Lecture Notes in Math., n° 213, Springer, 1971. Zbl0225.46005MR58 #30002
  12. [12] HOGBE-NLEND (H.). — Bornologies and Functional Analysis, North Holland Math. Studies, 26, 1978. Zbl0359.46004MR58 #17774
  13. [13] HORMANDER (L.). — An introduction to complex analysis in several variable, North Holland, 1973. Zbl0271.32001MR49 #9246
  14. [14] MAZET (P.). — Communication personnelle, avril 1980. 
  15. [15] NOVERRAZ (P.). — Approximation of holomorphic or plurisubharmonic function in certain Banach spaces. Proceedings on Infinite Dimensional holomorphy, Lecture Notes in Math., n° 364, Springer, 1974, p. 178-18. Zbl0284.46018MR52 #15008
  16. [16] NOVERRAZ (P.). — Pseudo convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North Holland Math Studies, t. 3, 1973. Zbl0251.46049MR50 #10814
  17. [17] PIETSCH (A.). — Nuclear Locally convex spaces, Ergebnisse der math., t. 66, Springer, 1972. Zbl0236.46001MR50 #2853
  18. [18] RABOIN (P.). — Le problème du ∂ sur un espace de Hilbert, Séminaire Lelong-Skoda, 1976-1977, Lecture Notes in Math., n° 694, Springer, 1978, p. 214-227. Zbl0418.32017MR80g:32035
  19. [19] RABOIN (P.). — The ∂ equation on a Hilbert space and some applications Advances in Holomorphy, BARROSO (J. A.), Ed., North Holland Math Studies, t. 34, 1979, p. 713-734. Zbl0421.46041
  20. [20] RABOIN (P.). — Le problème du ∂ sur un espace de Hilbert, Bulletin de la Soc. Math. de France, t. 107, 1979, p. 225-240. Zbl0414.46030MR80i:32052
  21. [21] RAPP (A.). — L'équation ∂ avec décroissance au bord sur certains ouverts convexes d'un espace de Banach, Bulletin de la Soc. Math. de France, Suppl. Mémoire, n° 46, 1976, p. 67-72. Zbl0375.35045MR57 #6509
  22. [22] SCHOTTENLOHER (M.). — The Lévi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition, Annales de l'Institut Fourier, vol. 26, n° 4, 1976, p. 207-237. Zbl0309.32013MR58 #1262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.