The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition

Martin Schottenloher

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 4, page 207-237
  • ISSN: 0373-0956

Abstract

top
It is proved that the Levi problem for certain locally convex Hausdorff spaces E over C with a finite dimensional Schauder decomposition (for example for Fréchet or Silva spaces with a Schauder basis) the Levi problem has a solution, i.e. every pseudoconvex domain spread over E is a domain of existence of an analytic function. It is also shown that a pseudoconvex domain spread over a Fréchet space or a Silva space with a finite dimensional Schauder decomposition is holomorphically convex and satisfies an approximation theorem of the Oka-Weil type.

How to cite

top

Schottenloher, Martin. "The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition." Annales de l'institut Fourier 26.4 (1976): 207-237. <http://eudml.org/doc/74301>.

@article{Schottenloher1976,
abstract = {It is proved that the Levi problem for certain locally convex Hausdorff spaces $E$ over $\{\bf C\}$ with a finite dimensional Schauder decomposition (for example for Fréchet or Silva spaces with a Schauder basis) the Levi problem has a solution, i.e. every pseudoconvex domain spread over $E$ is a domain of existence of an analytic function. It is also shown that a pseudoconvex domain spread over a Fréchet space or a Silva space with a finite dimensional Schauder decomposition is holomorphically convex and satisfies an approximation theorem of the Oka-Weil type.},
author = {Schottenloher, Martin},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {207-237},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition},
url = {http://eudml.org/doc/74301},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Schottenloher, Martin
TI - The Levi problem for domains spread over locally convex spaces with a finite dimensional Schauder decomposition
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 4
SP - 207
EP - 237
AB - It is proved that the Levi problem for certain locally convex Hausdorff spaces $E$ over ${\bf C}$ with a finite dimensional Schauder decomposition (for example for Fréchet or Silva spaces with a Schauder basis) the Levi problem has a solution, i.e. every pseudoconvex domain spread over $E$ is a domain of existence of an analytic function. It is also shown that a pseudoconvex domain spread over a Fréchet space or a Silva space with a finite dimensional Schauder decomposition is holomorphically convex and satisfies an approximation theorem of the Oka-Weil type.
LA - eng
UR - http://eudml.org/doc/74301
ER -

References

top
  1. [1] V. AURICH, The spectrum as envelope of holomorphy of a domain over an arbitrary product of complex lines. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 109-122. Springer Lecture Notes, 364 (1974). Zbl0278.32019
  2. [2] G. GOEURÉ, Analytic functions and manifolds in infinite dimensional spaces. Amsterdam : North-Holland 1974. Zbl0282.32015
  3. [3] S. DINEEN, Holomorphic functions on locally convex topological vector spaces II. Pseudoconvex domains, Ann. Inst. Fourier, 23 (1973), 155-185. Zbl0266.46019MR58 #22652
  4. [4] S. DINEEN, Surieties and holomorphic functions in infinite dimensions. Bull. Soc. math. France, 103 (1975), 441-509. Zbl0328.46045
  5. [5] S. DINEEN et Ph. NOVERRAZ, Le problème de Levi dans certains espaces vectoriels topologiques localement convexes, C.R. Acad. Sci., Paris, 278, A (1974), 693-695. And in full length with Schottenloher, M. : Bull. Soc. math. France, 104 (1976), 87-97. Zbl0334.46049
  6. [6] K. FLORET and J. WLOKA, Einführung in die Theorie der lokalkonvexen Räume, Springer Lecture Notes, 56 (1968). Zbl0155.45101MR37 #1945
  7. [7] T. FIGIEL and W. B. JOHNSON, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc., 41 (1973), 197-200. Zbl0289.46015MR49 #5782
  8. [8] L. GRUMAN, The Levi problem in certain infinite dimensional vector spaces, Ill. J. Math., 18 (1974), 20-26. Zbl0276.32017MR50 #993
  9. [9] L. GRUMAN et C. O. KISELMAN, Le problème de Levi dans les espaces de Banach à base, C.R. Acad. Sci., Paris, 274, A (1972), 1296-1299. Zbl0243.32017MR45 #3759
  10. [10] Y. HERVIER, Sur le problème de Levi pour les espaces étalés banachiques, C.R. Acad. Sci., 275, A (1972), 821-824. Zbl0243.32018MR47 #2098
  11. [11] A. HIRSCHOWITZ, Prolongement analytique en dimension infinie, Ann. Inst. Fourier, 22 (1972), 255-292. Zbl0224.32015MR49 #11256
  12. [12] L. HÖRMANDER, An introduction to complex analysis in several variables, Princeton, Van Nostrand 1966. Zbl0138.06203
  13. [13] B. JOSEFSON, A counterexample to the Levi problem. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 168-177. Springer Lecture Notes, 364 (1974). Zbl0285.32017
  14. [14] B. JOSEFSON, Weak sequential convergence in the dual of a Banach space does not imply norm convergence. Arkiv för Mat., 13 (1975), 79-89. Zbl0303.46018MR51 #11067
  15. [15] E. LIGOCKA, A local factorization of analytic functions and its applications, Studia Math., 47 (1973), 239-252. Zbl0261.46006MR50 #994
  16. [16] J. T. MARTI, Introduction to the theory of bases, Springer Tracts in Natural Philosophy, 18 (1969). Zbl0191.41301MR55 #10994
  17. [17] M. C. MATOS, Domains of τ-holomorphy in a separable Banach space, Math. Ann., 195 (1972), 273-278. Zbl0215.48302MR45 #2472
  18. [18] L. NACHBIN, Uniformité holomorphe et type exponentiel. In : Sém. P. Lelong, 1970/1971, pp. 216-224. Springer Lecture Notes, 205 (1971). Zbl0218.46024
  19. [19] Ph. NOVERRAZ, Pseudo-convexité, convexité polynomiale et domaines d'holomorphie en dimension infinie, Amsterdam, North-Holland, 1973. Zbl0251.46049
  20. [20] Ph. NOVERRAZ, Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 178-185. Springer Lecture Notes, 364 (1974). Zbl0284.46018
  21. [21] Ph. NOVERRAZ, Le problème de Levi dans certains espaces de Silva. Preprint. 
  22. [22] K. OKA, Domaines finis sans point critique intérieur, Jap. J. Math., 27 (1953), 97-155. Zbl0053.24302MR17,82b
  23. [23] A. PELCZYNSKI and P. WOJTASZCYK, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math., 40 (1971), 91-108. Zbl0221.46014MR47 #2319
  24. [24] R. POMÈS, Solution du problème de Levi dans les espaces de Silva à base, C.R. Acad. Sci., Paris, 278, A (1974), 707-710. Zbl0278.32021MR49 #11257
  25. [25] N. POPA, Sur le problème de Levi dans les espaces de Silva à base, C.R. Acad. Sci., Paris, 277, A (1973), 211-214. Zbl0261.32006MR51 #8464
  26. [26] M. SCHOTTENLOHER, Über analytische Fortsetzung in Banachräumen, Math. Ann., 199 (1972), 313-336. Zbl0241.46014MR50 #2566
  27. [27] M. SCHOTTENLOHER, The envelope of holomorphy as a functor. In : Fonctions analytiques de plusieurs variables et analyse complexe (Coll. Intern. du C.N.R.S., Paris 1972), pp. 221-230. Paris : Gauthier-Villars 1974. Zbl0309.46043
  28. [28] M. SCHOTTENLOHER, Bounding sets in Banach spaces and regular classes of analytic functions. In : Functional Analysis and Applications (Recife 1972), pp. 109-122. Springer Lecture Notes, 384 (1974). Zbl0285.46014
  29. [29] M. SCHOTTENLOHER, Riemann domains. Basic results and open questions. In : Proceedings on Infinite Dimensional Holomorphy (Lexington 1973), pp. 196-212. Springer Lecture Notes, 364 (1974). Zbl0281.32022
  30. [30] M. SCHOTTENLOHER, Analytic continuation and regular classes in locally convex Hausdorff spaces, Port. Math., 33 (1974), 219-250. Zbl0293.32023MR50 #8071
  31. [31] M. SCHOTTENLOHER, Das Leviproblem in unendlichdimensionalen Räumen mit Schauderzerlegung. Habilitationsschrift, München 1974. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.