Meromorphic extension of holomorphic functions with growth conditions
Bulletin de la Société Mathématique de France (1982)
- Volume: 110, page 417-427
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [1] CARLESON (L.). — Selected problems on exceptional sets. Van Nostrand Math. Studies no. 13, Van Nostrand, Princeton, N. J. (1967). Zbl0189.10903MR37 #1576
- [2] CEGRELL (U). — Removable singularities for plurisubharmonic functions and related problems. Proc. London Math. Soc. (3) 36, 310-336 (1978). Zbl0375.32013MR80m:32017
- [3] CEGRELL (U). — Some remarks on removable singularities for analytic functions with growth conditions. Manuscript, Uppsala (1981).
- [4] HARVEY (R.) and POLKING (J.). — Extending analytic objects. Comm. pure appl. math. 28, 701-727 (1975). Zbl0323.32013MR53 #13642
- [5] HÖRMANDER (L.). — An introduction to complex analysis in several variables. North Holland Publ. Co. (1973). Zbl0271.32001
- [6] KISELMAN (C. O.). — Densité des fonctions plurisousharmoniques. Bull. Soc. Math. France 107, 259-304 (1979). Zbl0416.32007MR80k:32021
- [7] LELONG (P.). — Plurisubharmonic functions and positive differential forms. New York : Gordon and Breach (1969). Zbl0195.11604
- [8] SCHIFFMAN (B.). — On the removal of singularities of analytic sets. Michigan Math. J. 15, 111-120 (1968). Zbl0165.40503MR37 #464
- [9] SCHIFFMAN (B.). — Extension of positive line bundles and meromorphic maps. Invent. Math. 15, 332-347 (1972). Zbl0223.32017MR51 #10689
- [10] SIU (Y.-T.). — Analyticity of sets associated to Lelong numbers and extension of meromorphic maps. Bull. Amer. Math. Soc. (N.S.) 79 : 2, 1200-1205 (1973). Zbl0282.32006MR48 #8842
- [11] SIU (Y.-T.). — Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53-156 (1974). Zbl0289.32003MR50 #5003
- [12] SKODA (H.). — Sous-ensembles analytiques d'ordre fini ou infini dans ℂn. Bull. Soc. Math. France 100, 353-408 (1978). Zbl0246.32009MR50 #5004
- [13] THIE (P.). — The Lelong number of a point of a complex analytic set. Math. Ann. 172, 269-312 (1967). Zbl0158.32804MR35 #5661