Invariants de plusieurs formes binaires

Michel Brion

Bulletin de la Société Mathématique de France (1982)

  • Volume: 110, page 429-445
  • ISSN: 0037-9484

How to cite

top

Brion, Michel. "Invariants de plusieurs formes binaires." Bulletin de la Société Mathématique de France 110 (1982): 429-445. <http://eudml.org/doc/87427>.

@article{Brion1982,
author = {Brion, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {rational module; Poincare series; algebra of invariant polynomials; invariants of bilinear form},
language = {fre},
pages = {429-445},
publisher = {Société mathématique de France},
title = {Invariants de plusieurs formes binaires},
url = {http://eudml.org/doc/87427},
volume = {110},
year = {1982},
}

TY - JOUR
AU - Brion, Michel
TI - Invariants de plusieurs formes binaires
JO - Bulletin de la Société Mathématique de France
PY - 1982
PB - Société mathématique de France
VL - 110
SP - 429
EP - 445
LA - fre
KW - rational module; Poincare series; algebra of invariant polynomials; invariants of bilinear form
UR - http://eudml.org/doc/87427
ER -

References

top
  1. [1] SPRINGER (T. A.). — Invariant theory (Lecture Notes n° 585, Springer-Verlag). Zbl0346.20020MR56 #5740
  2. [2] SPRINGER (T. A.). — On the invariant theory of SU2. Proc. of the Koninkl. Akad. van Wetenschappen, vol. 83(3), 1980, p. 339-345. Zbl0449.22017MR83k:20041
  3. [3] BRION M. — La série de Poincaré des U-invariants, C. R. Acad. Sci. Paris, t. 293 (21 septembre 1981) série I, p. 107-110. Zbl0476.22012MR83h:13018
  4. [4] WEYL H. — Zur Darstellungstheorie und Invariantenabzählung der projektiven, der Komplex- und der Drehungsgruppe. Gesammelte Abhandlungen, Band III, pl-25 (Springer-Verlag). Zbl52.0116.03
  5. [5] SYLVESTER J. J. — Tables of the generating functions and groundforms for simultaneous binary forms of the first orders, taken two and two together. Amer. J. of Maths., t. 2 (1879), p. 293-306. Zbl11.0082.03JFM11.0082.03
  6. [6] HOCHSTER M., ROBERTS J. L. — Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. in Math., t. 13 (1974), p. 115-175. Zbl0289.14010MR50 #311
  7. [7] STANLEY R. P. — Hilbert functions of graded algebras. Adv. in Math., t. 28 (1978), p. 57-83. Zbl0384.13012MR58 #5637
  8. [8] STANLEY R. P.. — Combinatorics and invariant theory dans : Proceedings of symposia in pure mathematics : Relations between combinatorics and other parts of mathematics, vol. 34 (1979), p. 345-355. Zbl0411.22006MR80e:15020
  9. [9] FRANKLIN F. — On the calculation of generating functions and tables of groundforms for binary quantics. Amer. J. of Maths., t. 3 (1880), p. 128-153. Zbl12.0086.02JFM12.0086.02
  10. [10] HILBERT D. — Über die vollen Invariantensysteme. Math. Annalen, t. 42 (1893), p. 313-373. JFM25.0173.01
  11. [11] ELLIOTT E. B. — An introduction to the algebra of quantics (Chelsea, 1964). 
  12. [12] SALMON G. — Leçons d'algèbre supérieure (Gauthier-Villars, 1890). JFM22.0124.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.