Opérations géométriques en cobordisme complexe

Michèle Audin

Bulletin de la Société Mathématique de France (1983)

  • Volume: 111, page 235-249
  • ISSN: 0037-9484

How to cite

top

Audin, Michèle. "Opérations géométriques en cobordisme complexe." Bulletin de la Société Mathématique de France 111 (1983): 235-249. <http://eudml.org/doc/87440>.

@article{Audin1983,
author = {Audin, Michèle},
journal = {Bulletin de la Société Mathématique de France},
keywords = {stable operations in complex cobordism which lift the Steenrod operations; Landweber-Novikov operations; Mischenko series; product formula; composition},
language = {fre},
pages = {235-249},
publisher = {Société mathématique de France},
title = {Opérations géométriques en cobordisme complexe},
url = {http://eudml.org/doc/87440},
volume = {111},
year = {1983},
}

TY - JOUR
AU - Audin, Michèle
TI - Opérations géométriques en cobordisme complexe
JO - Bulletin de la Société Mathématique de France
PY - 1983
PB - Société mathématique de France
VL - 111
SP - 235
EP - 249
LA - fre
KW - stable operations in complex cobordism which lift the Steenrod operations; Landweber-Novikov operations; Mischenko series; product formula; composition
UR - http://eudml.org/doc/87440
ER -

References

top
  1. [1] AUDIN (M.), La classe de cobordisme de la singularité d'un morphisme de fibrés vectoriels et des points doubles d'une application, C. R. Acad. Sc., Paris, t. 291, 1980, p. 307-309. Zbl0464.57016MR81k:57037
  2. [2] CONNER (P.) et FLOYD (E.), Differentiable periodic maps, Ergebnisse der Math., vol. 33, 1964, Springer-Verlag. Zbl0125.40103MR31 #750
  3. [3] TOM DIECK (T.), Steenrod Operationen in Kobordismen Theorien, Math. Z., vol. 107, 1968, p. 380-401. Zbl0167.51801MR39 #6302
  4. [4] LANDWEBER (P.), Cobordism operations and Hopf algebras, Trans A.M.S., vol. 129, 1967, p. 94-110. Zbl0169.54602MR36 #2145
  5. [5] McCRORY (C.), Cobordism operations and singularities of maps, Bull. A.M.S., vol. 82, 1976, p. 281-283. Zbl0338.57013MR54 #3718
  6. [6] NOVIKOV (S.), The method of algebraic topology from the viewpoint of cobordism theories, Isv. Akad. Nauk SSSR, vol. 31, 1967, p. 855-951. Zbl0169.54503MR36 #4561
  7. [7] QUILLEN (D.), Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., vol. 7, 1971, p. 29-56. Zbl0214.50502MR44 #7566
  8. [8] STEENROD (N.) et EPSTEIN (D.), Cohomology operations, Ann. of Math Studies, vol. 50, 1962, Princeton University Press. Zbl0102.38104MR26 #3056
  9. [9] WEIBULL (T.), Steenrod operations in spectral cohomology theories, Thèse, 1980, Chicago Circle. 
  10. [10] BUONCRISTIANO (S.), ROURKE (C. P.) et SANDERSON, (B. J.), A geometric approach to homology theory, London Math. Soc. Lecture Note, series 18, 1976. Zbl0315.55002MR54 #1234

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.