Riemann-Roch for general algebraic varieties

William Fulton; Henri Gillet

Bulletin de la Société Mathématique de France (1983)

  • Volume: 111, page 287-300
  • ISSN: 0037-9484

How to cite

top

Fulton, William, and Gillet, Henri. "Riemann-Roch for general algebraic varieties." Bulletin de la Société Mathématique de France 111 (1983): 287-300. <http://eudml.org/doc/87442>.

@article{Fulton1983,
author = {Fulton, William, Gillet, Henri},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Grothendieck-Riemann-Roch theorem; algebraic schemes; algebraic -schemes},
language = {eng},
pages = {287-300},
publisher = {Société mathématique de France},
title = {Riemann-Roch for general algebraic varieties},
url = {http://eudml.org/doc/87442},
volume = {111},
year = {1983},
}

TY - JOUR
AU - Fulton, William
AU - Gillet, Henri
TI - Riemann-Roch for general algebraic varieties
JO - Bulletin de la Société Mathématique de France
PY - 1983
PB - Société mathématique de France
VL - 111
SP - 287
EP - 300
LA - eng
KW - Grothendieck-Riemann-Roch theorem; algebraic schemes; algebraic -schemes
UR - http://eudml.org/doc/87442
ER -

References

top
  1. [1] BAUM (P.), FULTON (W.) and MACPHERSON (R.). — Riemann-Roch for singular varieties, Publ. Math. I.H.E.S., No. 45, 1975, pp. 101-167. Zbl0332.14003MR54 #317
  2. [2] BAUM (P.), FULTON (W.) and MACPHERSON (R.). — Riemann-Roch and topological K-theory for singular varieties, Acta math., Vol. 143, 1979, pp. 155-192. Zbl0474.14004MR82c:14021
  3. [3] BERTHELOT (P.), GROTHENDIECK (A.), ILLUSIE (L.) et al. Theorie des intersections et théorème de Riemann-Roch, Springer LN, Vol. 225, 1971. Zbl0218.14001MR50 #7133
  4. [4] BOREL (A.) and SERRE (J.-P.). — Le théorème de Riemann-Roch, d'après A. Grothendieck, Bull. Soc. math. France, T. 86, 1958, pp. 97-136. Zbl0091.33004MR22 #6817
  5. [5] FULTON (W.). — A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties, Compositio Math., Vol. 34, 1977, pp. 279-283. Zbl0367.14008MR57 #317
  6. [6] FULTON (W.). — Intersection Theory (to appear). Zbl0885.14002
  7. [7] FULTON (W.) and MACPHERSON (R.). — Categorical framework for the study of singular spaces, Memoirs A.M.S., Vol. 243, 1981. Zbl0467.55005MR83a:55015
  8. [8] GILLET (H.). — Riemann-Roch theorems for higher algebraic K-theory, Advances in Math., Vol. 40, 1981, pp. 203-289. Zbl0478.14010MR83m:14013
  9. [9] GILLET (H.), Comparison of K-theory spectral sequences, with applications in Algebraic K-Theory, Evanston, 1980, Springer LN 854, 1981, pp. 141-167. Zbl0478.14011MR83a:14021
  10. [10] GROTHENDIECK (A.) with DIEUDONNÉ (J.). — Éléments de Géométrie algébrique II, Publ. Math. I.H.E.S., No. 8, 1961. Zbl0118.36206
  11. [11] O'BRIAN (N. R.), TOLEDO (T.) and TONG (Y. L.). — Grothendieck-Riemann-Roch for complex manifolds, Bull. A.M.S., Vol. 5, 1981, pp. 182-184. Zbl0495.14010MR82m:32011
  12. [12] QUILLEN (D.). — Higher algebraic K-theory I, Springer LN 341, 1973, pp. 85-147. Zbl0292.18004MR49 #2895
  13. [13] VERDIER (J.-L.). — Le théorème de Riemann-Roch pour les intersections complètes, Astérisque, Vol. 36-37, 1976, pp. 189-228. Zbl0334.14026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.