Sur la structure locale des variétés sphériques

M. Brion; D. Luna

Bulletin de la Société Mathématique de France (1987)

  • Volume: 115, page 211-226
  • ISSN: 0037-9484

How to cite

top

Brion, M., and Luna, D.. "Sur la structure locale des variétés sphériques." Bulletin de la Société Mathématique de France 115 (1987): 211-226. <http://eudml.org/doc/87530>.

@article{Brion1987,
author = {Brion, M., Luna, D.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {reductive algebraic group acting on a toroidal spherical variety; cellular decomposition; torus embeddding},
language = {fre},
pages = {211-226},
publisher = {Société mathématique de France},
title = {Sur la structure locale des variétés sphériques},
url = {http://eudml.org/doc/87530},
volume = {115},
year = {1987},
}

TY - JOUR
AU - Brion, M.
AU - Luna, D.
TI - Sur la structure locale des variétés sphériques
JO - Bulletin de la Société Mathématique de France
PY - 1987
PB - Société mathématique de France
VL - 115
SP - 211
EP - 226
LA - fre
KW - reductive algebraic group acting on a toroidal spherical variety; cellular decomposition; torus embeddding
UR - http://eudml.org/doc/87530
ER -

References

top
  1. [1] BARDSLEY (P.) and RICHARDSON (R. W.). — Etale slices for algebraic transformation groups in characteristic p, Proc. London Math. Soc., (3), 51, 1985, p. 295-317. Zbl0604.14037MR86m:14034
  2. [2] BIALYNICKI-BIRULA (A.). — Some theorems on actions of algebraic groups, Ann. of Math., vol. 98, 1980, p. 480-497. Zbl0275.14007MR51 #3186
  3. [3] BRION (M.). — Quelques propriétés des espaces homogènes sphériques, Manuscripta Math., 55, 1986, p. 191-198. Zbl0604.14048MR87g:14054
  4. [4] BRION (M.), LUNA (D.) and VUST (Th.). — Espaces homogenes spheriques, Inventiones Math., 84, 1986, p. 617-632. Zbl0604.14047MR87g:14057
  5. [5] DANILOV (V. I.). — The geometry of toric varieties, Russian Math. Survevs, vol. 33 : 2. 1978, p. 97-154. Zbl0425.14013MR80g:14001
  6. [6] DE CONCINI (C.) and PROCESI (C.). — Complete symmetrie varieties. Proc. Montecatini Conf. on Invariant Theory, 1-44, Lect. Notes in Math., n° 996, Springer-Verlag, 1983. Zbl0581.14041MR85e:14070
  7. [7] DE CONCINI (C.) and SPRINGER (T. A.). — Betti numbers of complete symmetric varieties, Preprint. Zbl0596.14040
  8. [8] GROTHENDIECK (A.) et DIEUDONNE (J.). — Élements de Geometrie Algèbrique IV, Publ. Math. de l'I.H.E.S., n° 32, 1967. Zbl0153.22301
  9. [9] KEMPF (G.). — Instability in invariant theory, Ann. of Math., vol. 108, 1978, p. 299-316. Zbl0406.14031MR80c:20057
  10. [10] KEMPF (G.), KNUDSEN (F.), MUMFORD (D.) and SAINT-DONAT (B.). — Toroidal Embeddings, Lecture Notes in Math., no 339, Springer-Verlag, 1974. Zbl0271.14017MR49 #299
  11. [11] KIRWAN (F.). — Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, 1984. Zbl0553.14020MR86i:58050
  12. [12] KOSTANT (B.). — Lie group representations on polynomial rings, Amer. J. Math., vol. 85, 1963, p. 327-404. Zbl0124.26802MR28 #1252
  13. [13] LUNA (D.). — Slices étales, Bull. Soc. math. France, Mémoire 33, 1973, p. 81-105. Zbl0286.14014MR49 #7269
  14. [14] LUNA (D.) and VUST (Th.). — Plongements d'espaces homogènes, Commentarii Math. Helverici, vol. 58, 1983, p. 186-245. Zbl0545.14010
  15. [15] MUMFORD (D.) and FOGARTY (J.). — Geometric invariant theory, Second enlarged edition, Springer, 1982. Zbl0504.14008MR86a:14006
  16. [16] PAUER (F.). — Caractérisation valuative d'une classe de sous-groupes d'un groupe algébrique, 109e Congrès national des Soc. savantes, Dijon 1084, sciences, fasc. III, p. 159-166. 
  17. [17] SPRINGER (T. A.). — Linear algebraic groups, Progress in Math., no 9, Birkhäuser, 1981. Zbl0453.14022MR84i:20002
  18. [18] SUMIHIRO (H.). — Equivariant completion, J. Math. Kyoto Univ., vol. 14, 1974, p. 1-28. Zbl0277.14008MR49 #2732

NotesEmbed ?

top

You must be logged in to post comments.