Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces

Andrzej Derdziński

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 2, page 133-156
  • ISSN: 0037-9484

How to cite

top

Derdziński, Andrzej. "Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces." Bulletin de la Société Mathématique de France 116.2 (1988): 133-156. <http://eudml.org/doc/87550>.

@article{Derdziński1988,
author = {Derdziński, Andrzej},
journal = {Bulletin de la Société Mathématique de France},
keywords = {-bundles; surfaces; harmonic curvature; Weyl tensor; Gaussian curvature},
language = {eng},
number = {2},
pages = {133-156},
publisher = {Société mathématique de France},
title = {Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces},
url = {http://eudml.org/doc/87550},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Derdziński, Andrzej
TI - Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 2
SP - 133
EP - 156
LA - eng
KW - -bundles; surfaces; harmonic curvature; Weyl tensor; Gaussian curvature
UR - http://eudml.org/doc/87550
ER -

References

top
  1. [1] ATIYAH (M. F.), HITCHIN (N. J.) and SINGER (I. M.). — Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, t. 362, 1978, p. 425-461. Zbl0389.53011MR80d:53023
  2. [2] BERGER (M.), GAUDUCHON (P.) and MAZET (E.). — Le Spectre d'une Variété Riemannienne. — Berlin-Heidelberg-New York, Springer-Verlag, (Lecture Notes in Math., 194), 1971. Zbl0223.53034MR43 #8025
  3. [3] BERGER (M. S.). — Nonlinearity and Functional Analysis. — New York-San Francisco-London, Academic Press, 1977. Zbl0368.47001MR58 #7671
  4. [4] BESSE (A. L.). — Einstein Manifolds, Berlin-Heidelberg, Springer-Verlag, (Ergebnisse der Mathematik und ihrer Grenzgebiete, 10), 1987. Zbl0613.53001MR88f:53087
  5. [5] BOURGUIGNON (J.-P.). — Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein, Invent. Math., t. 63, 1981, p. 263-286. Zbl0456.53033MR82g:53051
  6. [6] BOURGUIGNON (J.-P.). — Metrics with harmonic curvature, Global Riemannian Geometry, [T. J. WILLMORE and N. HITCHIN, eds.], p. 18-26. — Chichester, Ellis Horwood Ltd., 1984. Zbl0622.53026MR86m:58043
  7. [7] CALABI (E.). — Extremal Kähler metrics, Seminar on Differential Geometry, [S. T. YAU, ed.], p. 259-290. — Princeton, N.J., Princeton University Press, 1982. Zbl0487.53057MR83i:53088
  8. [8] DERDZIŃSKI (A.). — Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Math. Z., t. 172, 1980, p. 273-280. Zbl0453.53037
  9. [9] DERDZIŃSKI (A.). — Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., t. 49, 1983, p. 405-433. Zbl0527.53030
  10. [10] DERDZIŃSKI (A.) and SHEN (C.-L.). — Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. (3), t. 47, 1983, p. 15-26. Zbl0519.53015MR84h:53048
  11. [11] DETURCK (D.) and GOLDSCHMIDT (H.). — Preprint, Philadelphia, Univ. of Pennsylvania, 1984. 
  12. [12] GRAY (A.). — Invariants of curvature operators of four-dimensional Riemannian manifolds, Proc. 13th Biennial Seminar Canadian Math. Congress, vol. 2, p. 42-65, 1972. Zbl0278.53034MR53 #9239
  13. [13] OBATA (M.). — The conjectures on conformal transformations of Riemannian manifolds, Bull. Amer. Math. Soc., t. 77, 1971, p. 265-270. Zbl0208.49903MR42 #5286
  14. [14] POLOMBO (A.). — Nombres caractéristiques d'une surface kählérienne compacte, C. R. Acad. Sci. Paris Sér. A Math., t. 283, 1976, p. 1025-1028. Zbl0339.53041MR55 #4068
  15. [15] SCHOEN (R.), WOLPERT (S.) and YAU (S. T.). — Geometric bounds on the low eigenvalues of a compact surface, Proc. Sympos. Pure Math., vol. 36, p. 279-285, 1980. Zbl0446.58018MR81i:58052
  16. [16] SCHOUTEN (J. A.). — Ricci Calculus. — Berlin-Heidelberg, Springer-Verlag, 1954. Zbl0057.37803
  17. [17] SINGER (I. M.) and THORPE (J. A.). — The curvature of 4-dimensional Einstein spaces, Global Analysis, [Papers in Honor of K. KODAIRA ; D. C. SPENCER and S. IYANAGA, eds.], p. 355-365. — Princeton, N.J., Princeton University Press, 1969. Zbl0199.25401MR41 #959
  18. [18] THORPE (J.). — Some remarks on the Gauss-Bonnet integral, J. Math. Mech., t. 18, 1969, p. 779-786. Zbl0183.50503MR41 #963
  19. [19] WHITNEY (H.). — Topological properties of differentiable manifolds, Bull. Amer. Math. Soc., t. 43, 1937, p. 785-805. Zbl0018.23902JFM63.0556.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.