Morse theory and existence of periodic solutions of convex hamiltonian systems
Bulletin de la Société Mathématique de France (1988)
- Volume: 116, Issue: 2, page 171-197
- ISSN: 0037-9484
Access Full Article
topHow to cite
topSzulkin, Andrzej. "Morse theory and existence of periodic solutions of convex hamiltonian systems." Bulletin de la Société Mathématique de France 116.2 (1988): 171-197. <http://eudml.org/doc/87552>.
@article{Szulkin1988,
author = {Szulkin, Andrzej},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convex function; Hamiltonian systems; strictly convex; strictly positive; Morse index},
language = {eng},
number = {2},
pages = {171-197},
publisher = {Société mathématique de France},
title = {Morse theory and existence of periodic solutions of convex hamiltonian systems},
url = {http://eudml.org/doc/87552},
volume = {116},
year = {1988},
}
TY - JOUR
AU - Szulkin, Andrzej
TI - Morse theory and existence of periodic solutions of convex hamiltonian systems
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 2
SP - 171
EP - 197
LA - eng
KW - convex function; Hamiltonian systems; strictly convex; strictly positive; Morse index
UR - http://eudml.org/doc/87552
ER -
References
top- [1] AUBIN (J.P.) and EKELAND (I.). — Applied Nonlinear Analysis. — New York, Wiley, 1984. Zbl0641.47066MR87a:58002
- [2] BERESTYCKI (H.), LASRY (J.M.), MANCINI (G.) and RUF (B.). — Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., t. 38, 1985, p. 253-289. Zbl0569.58027MR86j:58039
- [3] CASTRO (A.) and LAZER (A.C.). — Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. (4), t. 120, 1979, p. 113-137. Zbl0426.35038MR81d:58022
- [4] CHANG (K.C.). — Morse theory on Banach spaces and its applications to partial differential equations, Chinese Ann. Math. Ser. B, t. 4, 1983, p. 381-399. Zbl0534.58020MR85j:58040
- [5] CHANG (K.C.). — Morse theory and its applications to PDE, [Séminaire de Mathématiques Supérieures] 1983, Université de Montréal, to appear.
- [6] CLARKE (F.H.) and EKELAND (I.). — Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., t. 33, 1980, p. 103-116. Zbl0403.70016MR81e:70017
- [7] EKELAND (I.). — Nonconvex minimization problems, Bull. Amer. Math. Soc., t. 1, 1979, p. 443-474. Zbl0441.49011MR80h:49007
- [8] EKELAND (I.). — Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire, t. 1, 1984, p. 19-78. Zbl0537.58018MR85f:58023
- [9] EKELAND (I.) and HOFER (H.). — Periodic solutions with presbribed minimal period for convex autonomous hamiltonian systems, Invent. Math., t. 81, 1985, p. 155-188. Zbl0594.58035MR87b:58028
- [10] EKELAND (I.) and LASRY (J.M.). — On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR81m:58032
- [11] EKELAND (I.) and LASSOUED (L.). — Un flot hamiltonien a au moins deux trajectoires fermées sur toute surface d'énergie convexe et bornée, C. R. Acad. Sci. Paris Sér. I Math., t. 301, 1985, p. 161-164. Zbl0588.58013MR87e:58040
- [12] EKELAND (I.) and LASSOUED (L.). — Multiplicité des trajectoires fermées de systèmes hamiltoniens convexes, to appear.
- [13] GROMOLL (D.) and MEYER (W.). — On differentiable functions with isolated critical points, Topology, t. 8, 1969, p. 361-369. Zbl0212.28903MR39 #7633
- [14] HOFER (H.). — The topological degree at a critical point of mountain pass type, Proc. Sym. Pure Math., to appear. Zbl0608.58013
- [15] LANDESMAN (E.M.), LAZER (A.C.) and MEYERS (D.R.). — On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl., t. 52, 1975, p. 594-614. Zbl0354.35004MR54 #8403
- [16] LANG (S.). — Differential Manifolds. — Reading, Mass., Addison-Wesley, 1972. Zbl0239.58001MR55 #4241
- [17] LASSOUED (L.) and VITERBO (C.). — La théorie de Morse pour les systèmes hamiltoniens, [Colloque du Ceremade], Hermann, to appear. Zbl0537.58018
- [18] MAWHIN (J.) and WILLEM (M.). — On the generalized Morse lemma, Preprint, Université Catholique de Louvain, 1985. MR87k:58051
- [19] PITCHER (E.). — Inequalities of critical point theory, Bull. Amer. Math. Soc., t. 64, 1958, p. 1-30. Zbl0083.32704MR20 #2648
- [20] RABINOWITZ (P.H.). — Variational methods for nonlinear eigenvalue problems, [Proc. Sym. on Eigenvalues of Nonlinear Problems], pp. 143-195. — Rome, Edizioni Cremonese, 1974. MR57 #4232
- [21] RABINOWITZ (P.H.). — Periodic solutions of Hamiltonian systems : a survey, SIAM, J. Math. Anal., t. 13, 1982, p. 343-352. Zbl0521.58028MR83e:58028
- [22] ROTHE (E.H.). — Critical point theory in Hilbert space under regular boundary conditions, J. Math. Anal. Appl., t. 36, 1971, p. 377-431. MR44 #3356
- [23] ROTHE (E.H.). — Morse theory in Hilbert space, Rocky Moutain, J. Math., t. 3, 1973, p. 251-274. Zbl0281.49027MR48 #12594
- [24] SPANIER (E.). — Algebraic Topology. — New York, NcGraw-Hill, 1966. Zbl0145.43303MR35 #1007
- [25] VITERBO (C.). — Une théorie de Morse pour les systèmes hamiltoniens étoilés, Thesis, Université Paris-Dauphine, 1985. Zbl0608.58037MR87a:58072
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.