Morse theory and existence of periodic solutions of convex hamiltonian systems

Andrzej Szulkin

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 2, page 171-197
  • ISSN: 0037-9484

How to cite

top

Szulkin, Andrzej. "Morse theory and existence of periodic solutions of convex hamiltonian systems." Bulletin de la Société Mathématique de France 116.2 (1988): 171-197. <http://eudml.org/doc/87552>.

@article{Szulkin1988,
author = {Szulkin, Andrzej},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convex function; Hamiltonian systems; strictly convex; strictly positive; Morse index},
language = {eng},
number = {2},
pages = {171-197},
publisher = {Société mathématique de France},
title = {Morse theory and existence of periodic solutions of convex hamiltonian systems},
url = {http://eudml.org/doc/87552},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Szulkin, Andrzej
TI - Morse theory and existence of periodic solutions of convex hamiltonian systems
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 2
SP - 171
EP - 197
LA - eng
KW - convex function; Hamiltonian systems; strictly convex; strictly positive; Morse index
UR - http://eudml.org/doc/87552
ER -

References

top
  1. [1] AUBIN (J.P.) and EKELAND (I.). — Applied Nonlinear Analysis. — New York, Wiley, 1984. Zbl0641.47066MR87a:58002
  2. [2] BERESTYCKI (H.), LASRY (J.M.), MANCINI (G.) and RUF (B.). — Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., t. 38, 1985, p. 253-289. Zbl0569.58027MR86j:58039
  3. [3] CASTRO (A.) and LAZER (A.C.). — Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. (4), t. 120, 1979, p. 113-137. Zbl0426.35038MR81d:58022
  4. [4] CHANG (K.C.). — Morse theory on Banach spaces and its applications to partial differential equations, Chinese Ann. Math. Ser. B, t. 4, 1983, p. 381-399. Zbl0534.58020MR85j:58040
  5. [5] CHANG (K.C.). — Morse theory and its applications to PDE, [Séminaire de Mathématiques Supérieures] 1983, Université de Montréal, to appear. 
  6. [6] CLARKE (F.H.) and EKELAND (I.). — Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., t. 33, 1980, p. 103-116. Zbl0403.70016MR81e:70017
  7. [7] EKELAND (I.). — Nonconvex minimization problems, Bull. Amer. Math. Soc., t. 1, 1979, p. 443-474. Zbl0441.49011MR80h:49007
  8. [8] EKELAND (I.). — Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire, t. 1, 1984, p. 19-78. Zbl0537.58018MR85f:58023
  9. [9] EKELAND (I.) and HOFER (H.). — Periodic solutions with presbribed minimal period for convex autonomous hamiltonian systems, Invent. Math., t. 81, 1985, p. 155-188. Zbl0594.58035MR87b:58028
  10. [10] EKELAND (I.) and LASRY (J.M.). — On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR81m:58032
  11. [11] EKELAND (I.) and LASSOUED (L.). — Un flot hamiltonien a au moins deux trajectoires fermées sur toute surface d'énergie convexe et bornée, C. R. Acad. Sci. Paris Sér. I Math., t. 301, 1985, p. 161-164. Zbl0588.58013MR87e:58040
  12. [12] EKELAND (I.) and LASSOUED (L.). — Multiplicité des trajectoires fermées de systèmes hamiltoniens convexes, to appear. 
  13. [13] GROMOLL (D.) and MEYER (W.). — On differentiable functions with isolated critical points, Topology, t. 8, 1969, p. 361-369. Zbl0212.28903MR39 #7633
  14. [14] HOFER (H.). — The topological degree at a critical point of mountain pass type, Proc. Sym. Pure Math., to appear. Zbl0608.58013
  15. [15] LANDESMAN (E.M.), LAZER (A.C.) and MEYERS (D.R.). — On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence, J. Math. Anal. Appl., t. 52, 1975, p. 594-614. Zbl0354.35004MR54 #8403
  16. [16] LANG (S.). — Differential Manifolds. — Reading, Mass., Addison-Wesley, 1972. Zbl0239.58001MR55 #4241
  17. [17] LASSOUED (L.) and VITERBO (C.). — La théorie de Morse pour les systèmes hamiltoniens, [Colloque du Ceremade], Hermann, to appear. Zbl0537.58018
  18. [18] MAWHIN (J.) and WILLEM (M.). — On the generalized Morse lemma, Preprint, Université Catholique de Louvain, 1985. MR87k:58051
  19. [19] PITCHER (E.). — Inequalities of critical point theory, Bull. Amer. Math. Soc., t. 64, 1958, p. 1-30. Zbl0083.32704MR20 #2648
  20. [20] RABINOWITZ (P.H.). — Variational methods for nonlinear eigenvalue problems, [Proc. Sym. on Eigenvalues of Nonlinear Problems], pp. 143-195. — Rome, Edizioni Cremonese, 1974. MR57 #4232
  21. [21] RABINOWITZ (P.H.). — Periodic solutions of Hamiltonian systems : a survey, SIAM, J. Math. Anal., t. 13, 1982, p. 343-352. Zbl0521.58028MR83e:58028
  22. [22] ROTHE (E.H.). — Critical point theory in Hilbert space under regular boundary conditions, J. Math. Anal. Appl., t. 36, 1971, p. 377-431. MR44 #3356
  23. [23] ROTHE (E.H.). — Morse theory in Hilbert space, Rocky Moutain, J. Math., t. 3, 1973, p. 251-274. Zbl0281.49027MR48 #12594
  24. [24] SPANIER (E.). — Algebraic Topology. — New York, NcGraw-Hill, 1966. Zbl0145.43303MR35 #1007
  25. [25] VITERBO (C.). — Une théorie de Morse pour les systèmes hamiltoniens étoilés, Thesis, Université Paris-Dauphine, 1985. Zbl0608.58037MR87a:58072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.