𝔫 -coinvariants des 𝔤 -modules 𝔫 -localement nilpotents

Yves Benoist

Bulletin de la Société Mathématique de France (1988)

  • Volume: 116, Issue: 4, page 413-429
  • ISSN: 0037-9484

How to cite

top

Benoist, Yves. "${\mathfrak {n}}$-coinvariants des ${\mathfrak {g}}$-modules ${\mathfrak {n}}$-localement nilpotents." Bulletin de la Société Mathématique de France 116.4 (1988): 413-429. <http://eudml.org/doc/87562>.

@article{Benoist1988,
author = {Benoist, Yves},
journal = {Bulletin de la Société Mathématique de France},
keywords = {semi-simple Lie algebra; locally nilpotent module},
language = {fre},
number = {4},
pages = {413-429},
publisher = {Société mathématique de France},
title = {$\{\mathfrak \{n\}\}$-coinvariants des $\{\mathfrak \{g\}\}$-modules $\{\mathfrak \{n\}\}$-localement nilpotents},
url = {http://eudml.org/doc/87562},
volume = {116},
year = {1988},
}

TY - JOUR
AU - Benoist, Yves
TI - ${\mathfrak {n}}$-coinvariants des ${\mathfrak {g}}$-modules ${\mathfrak {n}}$-localement nilpotents
JO - Bulletin de la Société Mathématique de France
PY - 1988
PB - Société mathématique de France
VL - 116
IS - 4
SP - 413
EP - 429
LA - fre
KW - semi-simple Lie algebra; locally nilpotent module
UR - http://eudml.org/doc/87562
ER -

References

top
  1. [Bo 1] BOURBAKI (N.). - Groupes et algèbres de Lie, chap. 4, 5, et 6. - Paris, Masson, 1984. Zbl0483.22001
  2. [Bo 2] BOURBAKI (N.). - Groupes et algèbres de Lie, chap. 7 et 8. - Paris, CCLS, 1974. 
  3. [Di] DIXMIER (J.). - Algèbres enveloppantes. - Paris, Gauthier-Villars, 1974. Zbl0308.17007MR58 #16803a
  4. [Ka 1] KAC (V.G.). - Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izv., t. 2, 1968, p. 1271-1311. Zbl0222.17007
  5. [Ka 2] KAC (V.G.). - Infinite dimensional Lie algebras. - Cambridge University Press, 1985. Zbl0574.17010MR87c:17023
  6. [Ma] MATHIEU (O.). - Classification des algèbres de Lie graduées simples de croissance ≤ 1, Inv. Math., t. 86, 1986, p. 371-426. Zbl0615.17010MR88a:17008
  7. [Ve] VERMA (D.N.). - Structure of certain induced representation of semi-simple Lie algebras, Bull. Amer. Math. Soc., t. 74, 1968, p. 160-166 et 628. Zbl0157.07604MR36 #1503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.