Conservation de la ramification modérée par la correspondance de Howe

Anne-Marie Aubert

Bulletin de la Société Mathématique de France (1989)

  • Volume: 117, Issue: 3, page 297-303
  • ISSN: 0037-9484

How to cite

top

Aubert, Anne-Marie. "Conservation de la ramification modérée par la correspondance de Howe." Bulletin de la Société Mathématique de France 117.3 (1989): 297-303. <http://eudml.org/doc/87581>.

@article{Aubert1989,
author = {Aubert, Anne-Marie},
journal = {Bulletin de la Société Mathématique de France},
keywords = {double cover; symplectic group; p-adic field; oscillator representation; reductive p-adic group; smooth irreducible representations; reductive dual pair; Howe correspondence; tamely ramified representations; induced representations},
language = {fre},
number = {3},
pages = {297-303},
publisher = {Société mathématique de France},
title = {Conservation de la ramification modérée par la correspondance de Howe},
url = {http://eudml.org/doc/87581},
volume = {117},
year = {1989},
}

TY - JOUR
AU - Aubert, Anne-Marie
TI - Conservation de la ramification modérée par la correspondance de Howe
JO - Bulletin de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 117
IS - 3
SP - 297
EP - 303
LA - fre
KW - double cover; symplectic group; p-adic field; oscillator representation; reductive p-adic group; smooth irreducible representations; reductive dual pair; Howe correspondence; tamely ramified representations; induced representations
UR - http://eudml.org/doc/87581
ER -

References

top
  1. [1]AUBERT (A.-M.). — Représentation métaplectique et sous-groupes d'Iwahori, Prépublication. 
  2. [2]BERNSTEIN (J.), DELIGNE (P.), KAZHDAN (D.) et VIGNERAS (M.-F.). Représentations des groupes réductifs sur un corps local. — Paris, Hermann, 1984. Zbl0544.00007
  3. [3]CARTIER (P.). — Representations of reductive p-adic groups : a survey, Proc. Sympos. Pure Math., t. 33, 1979, p. 111-155. Zbl0421.22010MR81e:22029
  4. [4]CASSELMAN (W.). — Introduction to the theory of admissible representations of p-adic reductive groups, Prépublication. 
  5. [5]HOWE (R.). — ξ-series and invariant theory, Proc. Sympos. Pure Math., t. 33, 1979, p. 275-285. Zbl0423.22016MR81f:22034
  6. [6]KUDLA (S.). — On the local theta-correspondance, Invent. Math., t. 83, 1986, p. 229-255. Zbl0583.22010MR87e:22037
  7. [7]MOEGLIN (C.), VIGNÉRAS (M.-F.) et WALDSPURGER (J.-L.). — Correspondances de Howe sur un corps p-adique, Springer Lecture Notes. 
  8. [8]MOEGLIN (C.) et WALDSPURGER (J.-L.). — Sur l'involution de Zelevinski, J. Reine Angew. Math., t. 372, 1986, p. 136-177. Zbl0594.22008MR88c:22019
  9. [9]SAVIN (G.). — Local Shimura Correspondance, Prépublication. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.