Remarques sur un théorème de G. Halász et A. Sárközy

Michel Balazard

Bulletin de la Société Mathématique de France (1989)

  • Volume: 117, Issue: 4, page 389-413
  • ISSN: 0037-9484

How to cite

top

Balazard, Michel. "Remarques sur un théorème de G. Halász et A. Sárközy." Bulletin de la Société Mathématique de France 117.4 (1989): 389-413. <http://eudml.org/doc/87587>.

@article{Balazard1989,
author = {Balazard, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {additive function; number of prime factors; upper and lower bounds},
language = {fre},
number = {4},
pages = {389-413},
publisher = {Société mathématique de France},
title = {Remarques sur un théorème de G. Halász et A. Sárközy},
url = {http://eudml.org/doc/87587},
volume = {117},
year = {1989},
}

TY - JOUR
AU - Balazard, Michel
TI - Remarques sur un théorème de G. Halász et A. Sárközy
JO - Bulletin de la Société Mathématique de France
PY - 1989
PB - Société mathématique de France
VL - 117
IS - 4
SP - 389
EP - 413
LA - fre
KW - additive function; number of prime factors; upper and lower bounds
UR - http://eudml.org/doc/87587
ER -

References

top
  1. [1] BALAZARD (M.). — Sur la répartition des valeurs de certaines fonctions arithmétiques additives, Thèse, Université de Limoges, 1987. 
  2. [2] BALAZARD (M.), DELANGE (H.) et NICOLAS (J.L.). — Sur le nombre de facteurs premiers des entiers, C. R. Acad. Sci. Paris Sér. I Math., t. 306, 1988, p. 511-514. Zbl0644.10032MR89f:11122
  3. [3] DELANGE (H.). — A theorem on integral - valued additive functions, Illinois J. Math., t. 18, n° 3, 1974, p. 357-372. Zbl0284.10020MR51 #5538
  4. [4] ELLIOTT (P.D.T.A.). — Probabilistic number theory, vol. 2. - New York, Heidelberg, Berlin, Springer-Verlag, 1979-1980. Zbl0431.10029
  5. [5] ERDÖS (P.) and RUZSA (I.Z.). — On the small sieve, I : Sifting by primes, J. Number Theory, t. 12, 1980, p. 385-394. Zbl0435.10028
  6. [6] HALÁSZ (G.). — On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar., t. 6, 1971, p. 211-233. Zbl0226.10046MR47 #8471
  7. [7] HALÁSZ (G.). — Remarks to my paper “On the distribution of additive and the mean values of multiplicative arithmetic functions”, Studia Sci. Math. Hungar., t. 23, 1972, p. 425-432. Zbl0255.10046MR47 #8472
  8. [8] HALL (R. R.) and TENENBAUM (G.). — Divisors. — Cambridge University Press, 1988. Zbl0653.10001MR90a:11107
  9. [9] HILDEBRAND (A.). — Quantitative mean value theorems for non negative multiplicative functions, II, Acta Arith., t. 48, 1987, p. 209-260. Zbl0573.10034MR89b:11078
  10. [10] HILDEBRAND (A.) and TENENBAUM (G.). — On the distribution of round numbers, Duke Math. J., t. 56, 1988, p. 471-501. Zbl0655.10036MR89k:11084
  11. [11] MOZZOCHI (C.J.). — On the difference between consecutive primes, J. Number Theory, t. 24, 1986, p. 181-187. Zbl0599.10033MR88b:11057
  12. [12] NICOLAS (J. L.). — Sur la distribution des nombres entiers ayant une quantité fixée de facteurs premiers, Acta Arith., t. 44, 1984, p. 191-200. Zbl0512.10034MR86c:11067
  13. [13] NICOLAS (J.L.). — Distribution des valeurs de la fonction d'Euler, Enseign. Math., t. 30, 1984, p. 331-338. Zbl0553.10036MR86c:11076
  14. [14] NORTON (K.K.). — On the number of restricted prime factors of an integer, I, II, III, IV. I : Illinois J. Math, t. 20, 1976, p. 681-705 ; II : Acta Math., t. 143, 1979, p. 9-38 ; III : Enseign. Math., t. 28, 1982, p. 31-52 ; IV : Abstracts Amer. Math. Soc., t. 2, 1981, p. 366. Zbl0329.10035
  15. [15] NORTON (K.K.). — Estimates for partial sums of the exponential series, J. Math. Analysis, t. 63, 1976, p. 265-296. Zbl0385.41023MR58 #2997
  16. [16] POMERANCE (C.). — On the distribution of round numbers, [in K. Alladi, Editeur], Number Theory, (Proc. Ootacamund, India), 1984, Springer LN, 1122. Zbl0565.10038
  17. [17] RAMANUJAN (S.). — Collected Papers. — Chelsea Publishing Company, 1962. 
  18. [18] SÁRKÖZY (A.). — Remarks on a paper of G. HALĂSZ, Period. Math. Hungar., t. 8, 1977, p. 135-150. Zbl0361.10043
  19. [19] SELBERG (A.). — Note on a paper by L. G. SATHE, J. Indian Math. Soc., t. 18, 1954, p. 83-87. Zbl0057.28502MR16,676a
  20. [20] SCHOENFELD (L.). — Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x), II, Math. Comp., t. 30, 1976, p. 337-360. Zbl0326.10037MR56 #15581b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.