Classe de Segre et multiplicité équivariantes

E. Vasserot

Bulletin de la Société Mathématique de France (1991)

  • Volume: 119, Issue: 4, page 463-477
  • ISSN: 0037-9484

How to cite

top

Vasserot, E.. "Classe de Segre et multiplicité équivariantes." Bulletin de la Société Mathématique de France 119.4 (1991): 463-477. <http://eudml.org/doc/87633>.

@article{Vasserot1991,
author = {Vasserot, E.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lie group; bundle; cone bundle; Segre class},
language = {fre},
number = {4},
pages = {463-477},
publisher = {Société mathématique de France},
title = {Classe de Segre et multiplicité équivariantes},
url = {http://eudml.org/doc/87633},
volume = {119},
year = {1991},
}

TY - JOUR
AU - Vasserot, E.
TI - Classe de Segre et multiplicité équivariantes
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 4
SP - 463
EP - 477
LA - fre
KW - Lie group; bundle; cone bundle; Segre class
UR - http://eudml.org/doc/87633
ER -

References

top
  1. [AB] ATIYAH (M.F.) and BOTT (R.). — The moment map and equivariant cohomology, Topology, t. 23, 1984, p. 1-28. Zbl0521.58025MR85e:58041
  2. [BBM] BORHO (W.), BRYLINSKI (J.-L.) and MAC PHERS0N (R.). — Nilpotent Orbits, Primitive Ideals and Characteristic Classes, Progress in Mathematics, 78, Birkhäuser, 1989. Zbl0697.17006MR91d:17012
  3. [BGV] BERLINE (N.), GETZLER (E.) and VERGNE (M.). — Heat kernels and the Dirac operator. - A paraître. 
  4. [BT] BOTT (R.) and TU (L.W.). — Differential Forms in Algebraic Topology. - Springer-Verlag, 1982. Zbl0496.55001MR83i:57016
  5. [C] CARTAN (H.). — La transgression dans un groupe de Lie et dans un espace fibré principal, Coll. Topologie CBRM, 1950, p. 57-71. Zbl0045.30701MR13,107f
  6. [CG] CORNALBA (M.) and GRIFFITHS (P.). — Analytic Cycles and Vector Bundles on Non-Compact Algebraic Varieties, Invent. Math., t. 28, 1975, p. 1-106. Zbl0293.32026MR51 #3505
  7. [DNF] DOUBROVINE (B.), NOVIKOV (S.) and FOMENKO (A.). — Géométrie contemporaine III. - Mir, 1987. 
  8. [F] FULTON (W.). — Intersection theory. - Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
  9. [GH] GRIFFITHS (P.) and HARRIS (J.). — Principles of Algebraic Geometry. - John Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
  10. [J] JOSEPH (A.). — On the variety of a highest weight module, J. Algebra, t. 88, 1984, p. 238-278. Zbl0539.17006MR85j:17014
  11. [K] KING (J.R.). — The currents defined by analytic varieties, Acta Math., t. 127, 1971, p. 185-220. Zbl0224.32008MR52 #14359
  12. [MQ] MATHAI (V.) and QUILLEN (D.). — Superconnections, Thom classes, and equivariant differential forms, Topology, t. 25, 1986, p. 85-110. Zbl0592.55015MR87k:58006
  13. [R] ROSSMANN (W.). — Equivariant multiplicities on complex varieties, Astérisque, t. 173/174, 1989, p. 313-330. Zbl0691.32004MR91g:32042
  14. [V] VERGNE (M.). — Polynômes de Joseph et représentations de Springer, Ann. Sci. École Norm. Sup., t. 23, 1990, p. 543-562. Zbl0718.22009MR92c:17014
  15. [Va] VERONA (A.). — Integration on Whitney prestratifications, Rev. Roumaine Math. Pures Appl., t. 17, 1972, p. 1473-1480. Zbl0248.57025MR48 #6461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.