Classe de Segre et multiplicité équivariantes
Bulletin de la Société Mathématique de France (1991)
- Volume: 119, Issue: 4, page 463-477
- ISSN: 0037-9484
Access Full Article
topHow to cite
topVasserot, E.. "Classe de Segre et multiplicité équivariantes." Bulletin de la Société Mathématique de France 119.4 (1991): 463-477. <http://eudml.org/doc/87633>.
@article{Vasserot1991,
author = {Vasserot, E.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Lie group; bundle; cone bundle; Segre class},
language = {fre},
number = {4},
pages = {463-477},
publisher = {Société mathématique de France},
title = {Classe de Segre et multiplicité équivariantes},
url = {http://eudml.org/doc/87633},
volume = {119},
year = {1991},
}
TY - JOUR
AU - Vasserot, E.
TI - Classe de Segre et multiplicité équivariantes
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 4
SP - 463
EP - 477
LA - fre
KW - Lie group; bundle; cone bundle; Segre class
UR - http://eudml.org/doc/87633
ER -
References
top- [AB] ATIYAH (M.F.) and BOTT (R.). — The moment map and equivariant cohomology, Topology, t. 23, 1984, p. 1-28. Zbl0521.58025MR85e:58041
- [BBM] BORHO (W.), BRYLINSKI (J.-L.) and MAC PHERS0N (R.). — Nilpotent Orbits, Primitive Ideals and Characteristic Classes, Progress in Mathematics, 78, Birkhäuser, 1989. Zbl0697.17006MR91d:17012
- [BGV] BERLINE (N.), GETZLER (E.) and VERGNE (M.). — Heat kernels and the Dirac operator. - A paraître.
- [BT] BOTT (R.) and TU (L.W.). — Differential Forms in Algebraic Topology. - Springer-Verlag, 1982. Zbl0496.55001MR83i:57016
- [C] CARTAN (H.). — La transgression dans un groupe de Lie et dans un espace fibré principal, Coll. Topologie CBRM, 1950, p. 57-71. Zbl0045.30701MR13,107f
- [CG] CORNALBA (M.) and GRIFFITHS (P.). — Analytic Cycles and Vector Bundles on Non-Compact Algebraic Varieties, Invent. Math., t. 28, 1975, p. 1-106. Zbl0293.32026MR51 #3505
- [DNF] DOUBROVINE (B.), NOVIKOV (S.) and FOMENKO (A.). — Géométrie contemporaine III. - Mir, 1987.
- [F] FULTON (W.). — Intersection theory. - Springer-Verlag, 1984. Zbl0541.14005MR85k:14004
- [GH] GRIFFITHS (P.) and HARRIS (J.). — Principles of Algebraic Geometry. - John Wiley and Sons, 1978. Zbl0408.14001MR80b:14001
- [J] JOSEPH (A.). — On the variety of a highest weight module, J. Algebra, t. 88, 1984, p. 238-278. Zbl0539.17006MR85j:17014
- [K] KING (J.R.). — The currents defined by analytic varieties, Acta Math., t. 127, 1971, p. 185-220. Zbl0224.32008MR52 #14359
- [MQ] MATHAI (V.) and QUILLEN (D.). — Superconnections, Thom classes, and equivariant differential forms, Topology, t. 25, 1986, p. 85-110. Zbl0592.55015MR87k:58006
- [R] ROSSMANN (W.). — Equivariant multiplicities on complex varieties, Astérisque, t. 173/174, 1989, p. 313-330. Zbl0691.32004MR91g:32042
- [V] VERGNE (M.). — Polynômes de Joseph et représentations de Springer, Ann. Sci. École Norm. Sup., t. 23, 1990, p. 543-562. Zbl0718.22009MR92c:17014
- [Va] VERONA (A.). — Integration on Whitney prestratifications, Rev. Roumaine Math. Pures Appl., t. 17, 1972, p. 1473-1480. Zbl0248.57025MR48 #6461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.