Problèmes de Cauchy globaux

Alex Meril; Alain Yger

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 1, page 87-111
  • ISSN: 0037-9484

How to cite

top

Meril, Alex, and Yger, Alain. "Problèmes de Cauchy globaux." Bulletin de la Société Mathématique de France 120.1 (1992): 87-111. <http://eudml.org/doc/87639>.

@article{Meril1992,
author = {Meril, Alex, Yger, Alain},
journal = {Bulletin de la Société Mathématique de France},
keywords = {surjectivity; space of entire functions; Mathieu functions},
language = {fre},
number = {1},
pages = {87-111},
publisher = {Société mathématique de France},
title = {Problèmes de Cauchy globaux},
url = {http://eudml.org/doc/87639},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Meril, Alex
AU - Yger, Alain
TI - Problèmes de Cauchy globaux
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 1
SP - 87
EP - 111
LA - fre
KW - surjectivity; space of entire functions; Mathieu functions
UR - http://eudml.org/doc/87639
ER -

References

top
  1. [1] ANDERSSON (M.) and PASSARE (M.). — A shortcut to weighted representation formulas for holomorphic functions, Ark. Mat., t. 26, 1988, p. 1-12. Zbl0659.32006MR89i:32003
  2. [2] BERNDTSSON (B.). — A formula for interpolation and division in ℂn, Math. Ann., t. 263, 1981, p. 399-418. Zbl0499.32013MR85b:32005
  3. [3] BERNDTSSON (B.) and PASSARE (M.). — Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal., t. 84, 2, 1989, p. 358-372. Zbl0686.46031MR90i:32006
  4. [4] CAMPBELL (R.). — Théorie générale de l'équation de Mathieu. — Éditions Masson, Paris, 1955. Zbl0066.31702
  5. [5] COURANT (R.) and HILBERT (D.). — Methods of Mathematical physics, 2. — Interscience Publishers, Wiley and Sons, New York, 1962. 
  6. [6] EHRENPREIS (L.). — Fourier analysis in several complex variables. - Tracts in Math, 17, Wiley Interscience, New York, 1970. Zbl0195.10401MR44 #3066
  7. [7] FISCHER (E.). — Über die Differentiations prozesses der Algebra, J. Math., t. 148, 1917, p. 1-78. JFM46.1436.02
  8. [8] GILBARG (D.) and TRUDINGER (N.S.). — Elliptic Partial Differential Equations of second order. - Springer Verlag, Berlin, 1983. Zbl0562.35001MR86c:35035
  9. [9] HANSEN (S.). — Localizable analytically uniform spaces and the fundamental principle, Trans. Amer. Mat. Soc., t. 264, 1, 1981, p. 235-250. Zbl0482.46023MR82f:35047
  10. [10] HOBSON (E.W.). — The Theory of spherical and ellipsoidal Harmonics. - Chelsea Publishing Company, New York, 1965. 
  11. [11] KISELMAN (C.). — Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants, Bull. Soc. Math. France, t. 97, 1969, p. 329-356. Zbl0189.40502MR42 #2161
  12. [12] MCLACHLAN (N.W.). — Theory and application of Mathieu functions. - Oxford University Press, 1947. Zbl0029.02901MR9,31b
  13. [13] MALGRANGE (B.). — Sur les points singuliers des équations différentielles, Enseign. Math., t. 2, 20, 1974, p. 147-176. Zbl0299.34011MR51 #4316
  14. [14] MEIXNER (J.) and SCHAFKER (F.W.). — Mathieusche funktionen und sphäroid functionen, Die Grundlehren der Math, 71, Springer Verlag, 1954. Zbl0058.29503
  15. [15] MERIL (A.) and STRUPPA (D.). — Equivalence of Cauchy problems for entire and exponential type functions, Bull. London Math. Soc., t. 17, 1985, p. 469-473. Zbl0561.35007MR87b:32006
  16. [16] NEWMAN (D.J.) and SHAPIRO (H.). — Fischer spaces of entire functions, Proc. Sympos. Pure Math., t. 11, 1968, p. 360-369. Zbl0191.41501MR38 #2333
  17. [17] NEWMAN (D.J.) and SHAPIRO (H.). — A Hilbert space of entire functions related to the operational calculus, mimeographed, Ann Arbor, 1964. 
  18. [18] SHAPIRO (H.). — An algebraic theorem of E. Fischer and the holomorphic Goursat problem, preprint. 
  19. [19] SZEGÖ (G.). — Orthogonal polynomials. - Amer. Math. Soc. Colloq. Publ., t. 23, 1939. Zbl0023.21505JFM65.0278.03
  20. [20] VEKUA (I.N.). — New methods for solving elliptic equations. - North Holland, 1967. Zbl0146.34301MR35 #3243
  21. [21] WADA (R.). — A uniqueness set for linear partial differential operators of the second order, Funkcial. Ekvac., t. 31, 1988, p. 241-248. Zbl0683.35017MR89k:35006
  22. [22] WADA (R.). — Holomorphic functions on the complex sphere, Tokyo J. Math., t. 11, 1, 1988, p. 205-218. Zbl0656.32002MR89h:32004
  23. [23] WATSON (G.). — Theory of Bessel functions. - Cambridge University Press, London-New York, 1966. Zbl0174.36202
  24. [24] YGER (A.). — Formules de division et prolongement méromorphe, Séminaire Lelong-Skoda, 1986-1987, Lecture Notes in Math., 1295. Zbl0632.32010MR91c:32007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.