Connection between the algebra of kernels on the sphere and the Volterra algebra on the one-sheeted hyperboloid : holomorphic “perikernels”

J. Bros; G.A. Viano

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 2, page 169-225
  • ISSN: 0037-9484

How to cite

top

Bros, J., and Viano, G.A.. "Connection between the algebra of kernels on the sphere and the Volterra algebra on the one-sheeted hyperboloid : holomorphic “perikernels”." Bulletin de la Société Mathématique de France 120.2 (1992): 169-225. <http://eudml.org/doc/87641>.

@article{Bros1992,
author = {Bros, J., Viano, G.A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {perikernels; algebra of kernels on the unit sphere; algebra of Volterra kernels on the one-sheeted hyperboloid; algebra of holomorphic functions on the complex unit hyperboloid; analytic continuation; distortion of integration cycles; Volterra algebras of distribution kernels},
language = {eng},
number = {2},
pages = {169-225},
publisher = {Société mathématique de France},
title = {Connection between the algebra of kernels on the sphere and the Volterra algebra on the one-sheeted hyperboloid : holomorphic “perikernels”},
url = {http://eudml.org/doc/87641},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Bros, J.
AU - Viano, G.A.
TI - Connection between the algebra of kernels on the sphere and the Volterra algebra on the one-sheeted hyperboloid : holomorphic “perikernels”
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 2
SP - 169
EP - 225
LA - eng
KW - perikernels; algebra of kernels on the unit sphere; algebra of Volterra kernels on the one-sheeted hyperboloid; algebra of holomorphic functions on the complex unit hyperboloid; analytic continuation; distortion of integration cycles; Volterra algebras of distribution kernels
UR - http://eudml.org/doc/87641
ER -

References

top
  1. [1-a] FARAUT (J.). — Algèbre de Volterra et transformation de Laplace sphérique, Séminaire d'Analyse Harmonique de Tunis, 1981, exposé n° 29. 
  2. [1-b] FARAUT (J.). — Algèbres de Volterra et transformation de Laplace sphérique sur certains espaces symétriques ordonnés, Sympos. Math., t. 29, 1987, p. 183-196. Zbl0656.43003MR90e:43006
  3. [2] FARAUT (J.) and VIANO (G.A.). — Volterra algebra and the Bethe-Salpeter equation, J. Math. Phys., t. 27, 1986, p. 840-848. Zbl0586.45004MR87c:81090
  4. [3] HÖRMANDER (L.). — Uniqueness theorems and wavefront sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., t. 24, 1971, p. 671-704. Zbl0226.35019
  5. [4] SATO (M.), KAWAI (T.) and KASHIWARA (M.). — Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., t. 287, 1973, p. 265-529. Zbl0277.46039MR54 #8747
  6. [5-a] IAGOLNITZER (D.). — Microlocal essential support of a distribution and decomposition theorems an introduction, in “Hyperfunctions and Theoretical Physics”, Lecture Notes in Math., t. 449, 1975, p. 121-132. MR52 #11583
  7. [5-b] IAGOLNITZER (D.). — Analytic structure of distributions and essential support theory, in Structural analysis of collision amplitudes. — R. Balian and D. Iagolnitzer, North Holland, Amsterdam, New York, Oxford, 1976. MR57 #17278
  8. [6] BONY (J.M.). — Équivalence des diverses notions de spectre singulier analytique, Séminaire Goulaouic-Schwartz, École Polytechnique, Palaiseau, 1976-1977, exposé n° 3. Zbl0367.46036
  9. [7] PHAM (F.). — Introduction à l'étude topologique des singularités de Landau, Mémorial des Sciences Mathématiques 164. — Gauthier-Villars, Paris, 1967. Zbl0157.27503MR37 #4837
  10. [8] BROS (J.) and PESENTI (D.). — Fredholm theory in complex manifolds with complex parameters : analyticity properties and Landau singularities of the resolvent, J. Math. Pures Appl., t. 58, 1980, p. 375-401. Zbl0407.32001MR82c:81039
  11. [9] MARTINEAU (A.). — Distributions et valeurs au bord des fonctions holomorphes, Cours international d'été sur la théorie des distributions, Lisbonne 1964. MR36 #2833
  12. [10] LERAY (J.). — Le calcul différentiel et intégral sur une variété complexe (Problème de Cauchy III),, Bull. Soc. Math. France, t. 87, 1959, p. 81-180. Zbl0199.41203MR23 #A3281
  13. [11] BREMERMANN (H.J.). — Thesis, Schrift. Math. Inst. Univ. Münster 5, 1951. Zbl0066.06101
  14. [12] PAINLEVÉ (P.). — Sur les lignes singulières des fonctions analytiques, Ann. Fac. Sci. Toulouse Math. 2, t. B27, 1887, p. 27-29 (article reproduit dans “Oeuvres de Paul Painlevé”, tome II, p. 55-57, Éditions du C.N.R.S., Paris, 1974). JFM20.0404.01
  15. [13-a] BROS (J.) and GLASER (V.). — L'enveloppe d'holomorphie de l'union de deux polycercles, preprint CERN, (unpublished), 1961. 
  16. [13-b] BROS (J.). — Les problèmes de construction d'enveloppes d'holomorphie en théorie quantique des champs, Séminaire Lelong, Paris, exposé n° 8, 1962. Zbl0141.08805
  17. [13-c] BROS (J.). — Propriétés algébriques et analytiques de la fonction de n points en théorie quantique des champs, Thèse Univ. Paris, 1970. 
  18. [14] BROS (J.), EPSTEIN (H.), GLASER (V.) and STORA (R.). — Quelques aspects globaux des problèmes d'edge-of-the-wedge, in “Hyperfunctions and Theoretical Physics”, Lecture Notes in Math., t. 449, 1975, p. 185-218. Zbl0317.32013MR54 #7849

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.