Sur les lignes singulières des fonctions analytiques
Annales de la Faculté des sciences de Toulouse : Mathématiques (1888)
- Volume: 2, page B1-B130
- ISSN: 0240-2963
Access Full Article
topHow to cite
topPainlevé, Paul. "Sur les lignes singulières des fonctions analytiques." Annales de la Faculté des sciences de Toulouse : Mathématiques 2 (1888): B1-B130. <http://eudml.org/doc/72592>.
@article{Painlevé1888,
author = {Painlevé, Paul},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Analytic continuation. Differential equations in the complex domain. Functions with prescribed singularities},
language = {fre},
pages = {B1-B130},
publisher = {GAUTHIER-VILLARS ET FILS, IMPRIMEURS-LIBRAIRES},
title = {Sur les lignes singulières des fonctions analytiques},
url = {http://eudml.org/doc/72592},
volume = {2},
year = {1888},
}
TY - JOUR
AU - Painlevé, Paul
TI - Sur les lignes singulières des fonctions analytiques
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1888
PB - GAUTHIER-VILLARS ET FILS, IMPRIMEURS-LIBRAIRES
VL - 2
SP - B1
EP - B130
LA - fre
KW - Analytic continuation. Differential equations in the complex domain. Functions with prescribed singularities
UR - http://eudml.org/doc/72592
ER -
Citations in EuDML Documents
top- Juan Bory-Reyes, A note on the solvability of homogeneous Riemann boundary problem with infinity index
- Jiří Matyska, An example of removable singularities for bounded holomorphic functions
- J. Bros, G.A. Viano, Connection between the algebra of kernels on the sphere and the Volterra algebra on the one-sheeted hyperboloid : holomorphic “perikernels”
- Jaroslav Fuka, Josef Král, Analytic capacity and linear measure
- Hélène Gispert, La théorie des ensembles en France avant la crise de 1905 : Baire, Borel, Lebesgue... et tous les autres
- J. L. Walsh, Approximation by polynomials in the complex domain
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.