Harmonic maps on spaces with conical singularities

Y.-J. Chiang; A. Ratto

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 2, page 251-262
  • ISSN: 0037-9484

How to cite

top

Chiang, Y.-J., and Ratto, A.. "Harmonic maps on spaces with conical singularities." Bulletin de la Société Mathématique de France 120.2 (1992): 251-262. <http://eudml.org/doc/87644>.

@article{Chiang1992,
author = {Chiang, Y.-J., Ratto, A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {heat flow; heat equation; singular algebraic curves; conformally conical singularities},
language = {eng},
number = {2},
pages = {251-262},
publisher = {Société mathématique de France},
title = {Harmonic maps on spaces with conical singularities},
url = {http://eudml.org/doc/87644},
volume = {120},
year = {1992},
}

TY - JOUR
AU - Chiang, Y.-J.
AU - Ratto, A.
TI - Harmonic maps on spaces with conical singularities
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 2
SP - 251
EP - 262
LA - eng
KW - heat flow; heat equation; singular algebraic curves; conformally conical singularities
UR - http://eudml.org/doc/87644
ER -

References

top
  1. [1] CHEEGER (J.). — On the spectral geometry of spaces with conical singularities, Proc. Nat. Acad. Sci. U.S.A., t. 76, 1979, p. 2103-2106. Zbl0411.58003MR80k:58098
  2. [2] CHEEGER (J.). — Singular Riemannian spaces, J. Differential Geom., t. 18, 1983, p. 575-657. Zbl0529.58034MR85d:58083
  3. [3] CHEEGER (J.) and TAYLOR (M.). — On the diffraction of waves by conical singularities I, II, Comm. Pure Appl. Math., t. 35, 1982, p. 275-331 and p. 487-529. Zbl0526.58049MR84h:35091a
  4. [4] CHEEGER (J.), GORESKY (M.) and MACPHERSON (R.). — L2-cohomology and intersection homology of algebraic varieties. — Annals Math. Studies 102, Princeton, 1982. Zbl0503.14008
  5. [5] CHEN (Y.) and DING (W.-Y.). — Blow-up and global existence for heat flows of harmonic maps, Invent. Math., t. 99, 1990, p. 567-578. Zbl0674.58019MR90m:58039
  6. [6] CHIANG (Y.-J.). — Harmonic maps of V-manifolds, Ann. Global Anal. Geom., t. 8, 1990, p. 315-344. Zbl0679.58014MR92c:58021
  7. [7] CORON (J.-M.) et GHIDAGLIA (J.-M.). — Explosion en temps fini pour le flot des applications harmoniques, C.R. Acad. Sci. Paris, t. 308, 1989, p. 339-344. Zbl0679.58017MR90g:58026
  8. [8] DUNFORD (N.) and SCHWARTZ (J.-T.). — Linear operators I, II. — Wiley-Interscience, 1963. 
  9. [9] EELLS (J.) and LEMAIRE (L.). — A report on harmonic maps, Bull. London Math. Soc., t. 10, 1978, p. 1-68. Zbl0401.58003MR82b:58033
  10. [10] EELLS (J.) and LEMAIRE (L.). — Another report on harmonic maps, Bull. London Math. Soc., t. 20, 1988, p. 385-524. Zbl0669.58009MR89i:58027
  11. [11] EELLS (J.) and SAMPSON (J.-H.). — Harmonic mappings of Riemannian manifolds, Amer. J. Math., t. 86, 1964, p. 109-164. Zbl0122.40102MR29 #1603
  12. [12] EELLS (J.) and WOOD (J.-C.). — Restrictions on harmonic maps of surfaces, Topology, t. 15, 1976, p. 263-266. Zbl0328.58008MR54 #8720
  13. [13] FRIEDMANN (A.). — Partial differential equations of parabolic type. — Prentice-Hall Inc., 1964. Zbl0144.34903
  14. [14] GRIFFITHS (P.) and HARRIS (J.). — Principles of algebraic geometry. — Wiley-Interscience, 1978. Zbl0408.14001MR80b:14001
  15. [15] LEBEDEY (N.). — Special functions and their applications. — Dover, New York, 1972. Zbl0271.33001
  16. [16] POGORZELSKY (W.). — Propriétés des intégrales de l'équation parabolique normale, Ann. Math. Polinici, t. 4, 1957, p. 61-92. Zbl0080.30602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.