Harmonic maps on spaces with conical singularities
Bulletin de la Société Mathématique de France (1992)
- Volume: 120, Issue: 2, page 251-262
- ISSN: 0037-9484
Access Full Article
topHow to cite
topChiang, Y.-J., and Ratto, A.. "Harmonic maps on spaces with conical singularities." Bulletin de la Société Mathématique de France 120.2 (1992): 251-262. <http://eudml.org/doc/87644>.
@article{Chiang1992,
author = {Chiang, Y.-J., Ratto, A.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {heat flow; heat equation; singular algebraic curves; conformally conical singularities},
language = {eng},
number = {2},
pages = {251-262},
publisher = {Société mathématique de France},
title = {Harmonic maps on spaces with conical singularities},
url = {http://eudml.org/doc/87644},
volume = {120},
year = {1992},
}
TY - JOUR
AU - Chiang, Y.-J.
AU - Ratto, A.
TI - Harmonic maps on spaces with conical singularities
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 2
SP - 251
EP - 262
LA - eng
KW - heat flow; heat equation; singular algebraic curves; conformally conical singularities
UR - http://eudml.org/doc/87644
ER -
References
top- [1] CHEEGER (J.). — On the spectral geometry of spaces with conical singularities, Proc. Nat. Acad. Sci. U.S.A., t. 76, 1979, p. 2103-2106. Zbl0411.58003MR80k:58098
- [2] CHEEGER (J.). — Singular Riemannian spaces, J. Differential Geom., t. 18, 1983, p. 575-657. Zbl0529.58034MR85d:58083
- [3] CHEEGER (J.) and TAYLOR (M.). — On the diffraction of waves by conical singularities I, II, Comm. Pure Appl. Math., t. 35, 1982, p. 275-331 and p. 487-529. Zbl0526.58049MR84h:35091a
- [4] CHEEGER (J.), GORESKY (M.) and MACPHERSON (R.). — L2-cohomology and intersection homology of algebraic varieties. — Annals Math. Studies 102, Princeton, 1982. Zbl0503.14008
- [5] CHEN (Y.) and DING (W.-Y.). — Blow-up and global existence for heat flows of harmonic maps, Invent. Math., t. 99, 1990, p. 567-578. Zbl0674.58019MR90m:58039
- [6] CHIANG (Y.-J.). — Harmonic maps of V-manifolds, Ann. Global Anal. Geom., t. 8, 1990, p. 315-344. Zbl0679.58014MR92c:58021
- [7] CORON (J.-M.) et GHIDAGLIA (J.-M.). — Explosion en temps fini pour le flot des applications harmoniques, C.R. Acad. Sci. Paris, t. 308, 1989, p. 339-344. Zbl0679.58017MR90g:58026
- [8] DUNFORD (N.) and SCHWARTZ (J.-T.). — Linear operators I, II. — Wiley-Interscience, 1963.
- [9] EELLS (J.) and LEMAIRE (L.). — A report on harmonic maps, Bull. London Math. Soc., t. 10, 1978, p. 1-68. Zbl0401.58003MR82b:58033
- [10] EELLS (J.) and LEMAIRE (L.). — Another report on harmonic maps, Bull. London Math. Soc., t. 20, 1988, p. 385-524. Zbl0669.58009MR89i:58027
- [11] EELLS (J.) and SAMPSON (J.-H.). — Harmonic mappings of Riemannian manifolds, Amer. J. Math., t. 86, 1964, p. 109-164. Zbl0122.40102MR29 #1603
- [12] EELLS (J.) and WOOD (J.-C.). — Restrictions on harmonic maps of surfaces, Topology, t. 15, 1976, p. 263-266. Zbl0328.58008MR54 #8720
- [13] FRIEDMANN (A.). — Partial differential equations of parabolic type. — Prentice-Hall Inc., 1964. Zbl0144.34903
- [14] GRIFFITHS (P.) and HARRIS (J.). — Principles of algebraic geometry. — Wiley-Interscience, 1978. Zbl0408.14001MR80b:14001
- [15] LEBEDEY (N.). — Special functions and their applications. — Dover, New York, 1972. Zbl0271.33001
- [16] POGORZELSKY (W.). — Propriétés des intégrales de l'équation parabolique normale, Ann. Math. Polinici, t. 4, 1957, p. 61-92. Zbl0080.30602
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.