Removability of singularities of harmonic maps into pseudo-riemannian manifolds
Frédéric Hélein (2004)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Frédéric Hélein (2004)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Todjihounde, Leonard (2006)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Jiayu Li (1993)
Mathematische Zeitschrift
Similarity:
Yun Mei Chen, Roberta Musina (1990)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Choi, Gundon, Yun, Gabjin (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Chang Kung-Ching (1989)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Bent Fuglede (1978)
Annales de l'institut Fourier
Similarity:
A harmonic morphism between Riemannian manifolds and is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim dim, since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where vanishes. Every non-constant harmonic morphism is shown to be...