Distinguished representations and a Fourier summation formula

Yuval Z. Flicker

Bulletin de la Société Mathématique de France (1992)

  • Volume: 120, Issue: 4, page 413-465
  • ISSN: 0037-9484

How to cite


Flicker, Yuval Z.. "Distinguished representations and a Fourier summation formula." Bulletin de la Société Mathématique de France 120.4 (1992): 413-465. <http://eudml.org/doc/87651>.

author = {Flicker, Yuval Z.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {distinguished representation; summation formula; relative trace formula},
language = {eng},
number = {4},
pages = {413-465},
publisher = {Société mathématique de France},
title = {Distinguished representations and a Fourier summation formula},
url = {http://eudml.org/doc/87651},
volume = {120},
year = {1992},

AU - Flicker, Yuval Z.
TI - Distinguished representations and a Fourier summation formula
JO - Bulletin de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 120
IS - 4
SP - 413
EP - 465
LA - eng
KW - distinguished representation; summation formula; relative trace formula
UR - http://eudml.org/doc/87651
ER -


  1. [A] ARTHUR (J.). — A trace formula for reductive groups, [A1], I. Terms associated to classes in G(Q), Duke Math. J., t. 45, 1978, p. 911-952, and [A2], II. Applications of a truncation operator, Compositio Math., t. 40, 1980, p. 87-121. Zbl0499.10032
  2. [BZ] BERNSTEIN (J.) and ZELEVINSKII (A.). — Representations of the group GL(n, F) where F is a nonarchimedean local field, Uspekhi Mat. Nauk, t. 31, 1976, p. 5-70, and [BZ1], Induced representations of reductive p-adic groups. I, Ann. Sci. École Norm. Sup., t. 10, 1977, p. 441-472. Zbl0412.22015
  3. [B] BIEN (F.). — D-modules and spherical representations. — Princeton Univ. Press, 39, 1990. Zbl0723.22014MR92f:22025
  4. [BH] BOPP (N.) et HARINCK (P.). — Formule de Plancherel pour GL(n, ℂ)/U(p, q), Math. Gottingensis, t. 27, 1990, p. 1-52. 
  5. [D] DELORME (P.). — Coefficients généralisés de séries principales sphériques et distributions sphériques sur G(ℂ)/G(ℝ), Invent. Math., t. 105, 1991, p. 305-346. Zbl0741.43010MR92j:22027
  6. [FJ] FLENSTED-JENSEN (M.). — Discrete series for semi-simple symmetric spaces, Ann. of Math., t. 111, 1980, p. 253-311. Zbl0462.22006MR81h:22015
  7. [F] FLICKER (Y.). — [F1], On distinguished representations, J. Reine Angew. Math., t. 418, 1991, p. 139—172 and [F2], Twisted tensors and Euler products, Bull. Soc. Math. France, t. 116, 1988, p. 295-313, and [F3], Stable and labile base change for U(2), Duke Math. J., t. 49, 1982, p. 691-729, and [F4] Packets and liftings for U(3), J. Analyse Math, t. 50, 1988, p. 19-63, and [F5], On the local twisted tensor L-function, preprint. MR92i:22019
  8. [FK] FLICKER (Y.) and KAZHDAN (D.). — [FK1], Metaplectic correspondence, Publ. Math. IHES, t. 64, 1987, p. 53-110, and [FK2], A simple trace formula, J. Analyse Math., t. 50, 1988, p. 189-200. Zbl0616.10024
  9. [GK] GELFAND (I.) and KAZHDAN (D.). — Representations of GL(n, K) where K is a local field, in Lie groups and their representations, John Wiley and Sons, 1975, p. 95-118. Zbl0348.22011MR53 #8334
  10. [JPS] JACQUET (H.), PIATETSKI-SHAPIRO (I.) and SHALIKA (J.). — Rankin-Selberg convolutions, Amer. J. Math., t. 105, 1983, p. 367-464. Zbl0525.22018MR85g:11044
  11. [JS] JACQUET (H.) and SHALIKA (J.). — On Euler products and the classification of automorphic representations, Amer. J. Math., t. 103, 1981, p. I : 499-558, II : 777-815, and [JS1] Rankin-Selberg convolutions : Archimedean theory, in Piatetski-Shapiro Festchrift I, IMCP, t. 2, 1990, p. 125-207. Zbl0473.12008MR82m:10050a
  12. [K] KEYS (D.). — [K1], Principal series representations of special unitary groups over local field, Compositio Math., t. 51, 1984, p. 115-130, and [K2] L-indistinguishability and R-groups for quasi-split groups ; unitary groups in even dimension, Ann. Sci. École Norm. Sup., t. 20, 1987, p. 31-64. Zbl0547.22009MR85d:22031
  13. [L] LANGLANDS (R.). — [L1], Problems in the theory of automorphic forms, in Modern Analysis and applications, SLN, t. 170, 1970, p. 18-86, and [L2], On the functional equations satisfied by Eisenstein series, SLN, t. 544, 1976, and [L3], Book review of The Theory of Eisenstein Systems, by S. Osborne and G. Warner, Academic Press, New-York 1981, Bull. AMS, t. 9, 1983, p. 351-361. MR46 #1758
  14. [MW] MOEGLIN (C.) et WALDSPURGER (J.-L). — [MW1], Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup., t. 22, 1989, p. 605-674, and [MW2], Décomposition spectrale et séries d'Eisenstein. Zbl0696.10023MR91b:22028
  15. [M] MORRIS (L.). — Eisenstein series for reductive groups over global function fields, Canad. J. Math., t. 34, 1982, I : p. 91-168, II : p. 1112-1182. Zbl0499.22021MR84j:22024a
  16. [OM] OSHIMA (T.) and MATSUKI (T.). — A description of discrete series for semisimple symmetric spaces, Adv. Stud. Pure Math., t. 4, 1984, p. 331-390. Zbl0577.22012MR87m:22042
  17. [S] SANO (S.). — Invariant spherical distributions and the Fourier inversion formula on GL(n, ℂ)/GL(n, ℝ), J. Math. Soc. Japan, t. 36, 1984, p. 191-219. Zbl0545.43010MR85h:43011
  18. [Sh] SHAHIDI (F.). — [Sh1], On certain L-functions, Amer. J. Math., t. 103, 1981, p. 297-355, and [Sh2], Fourier transforms of intertwining operators and Plancherel measures for GL(n), Amer. J. Math., t. 104, 1982, p. 67-111, and [Sh3], Local coefficients and normalization of intertwining operators for GL(n), Compositio Math., t. 48, 1983, p. 271-295. MR82i:10030
  19. [T] TADIC (M.). — Classification of unitary representations in irreducible representations of general linear group, Ann. Sci. École Norm. Sup., t. 19, 1986, p. 335-382. Zbl0614.22005MR88b:22021
  20. [V] VOGAN (D.). — Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math., t. 48, 1978, p. 75-98. Zbl0389.17002MR58 #22205
  21. [W] WALDSPURGER (J.-L.). — Correspondence de Shimura, J. Math. Pures Appl., t. 59, 1980, p. 1-113, and Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl., t. 60, 1981, p. 375-484. Zbl0431.10015
  22. [Z] ZELEVINSKY (A.). — Induced representations of reductive p-adic groups, II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup., t. 13, 1980, p. 165-210. Zbl0441.22014MR83g:22012

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.