Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)

Marko Tadić

Annales scientifiques de l'École Normale Supérieure (1986)

  • Volume: 19, Issue: 3, page 335-382
  • ISSN: 0012-9593

How to cite

top

Tadić, Marko. "Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)." Annales scientifiques de l'École Normale Supérieure 19.3 (1986): 335-382. <http://eudml.org/doc/82179>.

@article{Tadić1986,
author = {Tadić, Marko},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local field; Langlands parameters; irreducible unitary representations; general linear group; non-Archimedean field; complementary series; unitary dual; Zelevinski parameters},
language = {eng},
number = {3},
pages = {335-382},
publisher = {Elsevier},
title = {Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)},
url = {http://eudml.org/doc/82179},
volume = {19},
year = {1986},
}

TY - JOUR
AU - Tadić, Marko
TI - Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 3
SP - 335
EP - 382
LA - eng
KW - local field; Langlands parameters; irreducible unitary representations; general linear group; non-Archimedean field; complementary series; unitary dual; Zelevinski parameters
UR - http://eudml.org/doc/82179
ER -

References

top
  1. [1] J. N. BERNSTEIN, All Reductive p-adic Groups Are Tame (Funct. Anal. Appl., Vol. 8, 1974, pp. 91-93). Zbl0298.43013MR50 #543
  2. [2] J. N. BERNSTEIN, P-Invariant Distributions on GL (N) and the Classification of Unitary Representations of GL (N) (Non-Archimedean Case), in Lie Group Representations II (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1984, pp. 50-102). Zbl0541.22009
  3. [3] J. N. BERNSTEIN, P. DELIGNE, D. KAZHDAN and M. F. VIGNERAS, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984. Zbl0544.00007
  4. [4] J. N. BERNSTEIN and A. V. ZELEVINSKY, Representations of the Group GL (n, F), where F Is a Local Non-Archimedean Field [Uspekhi Mat. Nauk, Vol. 31, No. 3, 1976, pp. 5-70 (= Russian Math. Surveys, Vol. 31, No. 3, 1976, pp. 1-68)]. Zbl0348.43007
  5. [5] J. N. BERNSTEIN and A. V. ZELEVINSKY, Induced Representations of Reductive p-adic Groups, I (Ann. Scient. Éc. Norm. Sup., Vol. 10, 1977, pp. 441-472). Zbl0412.22015MR58 #28310
  6. [6] P. CARTIER, Representations of p-adic Groups : a Survey, in Proc. Sympos. Pure Math., Vol. XXXIII, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 111-155. Zbl0421.22010MR81e:22029
  7. [7] W. CASSELMAN, Introduction to the Theory of Admissible Representations of p-adic Reductive Groups, preprint. 
  8. [8] G. VAN DIJK, Computation of Certain Induced Characters of p-adic Groups (Math. Ann., Vol. 199, 1972, pp. 229-240). Zbl0231.22018MR49 #3043
  9. [9] D. FLATH, Decomposition of Representations into Tensor Products, in Proc. Sympos. Pure Math., Vol. XXXIII, part I, Amer. Math. Soc., Providence, R. I., 1979, pp. 179-183. Zbl0414.22019MR81f:22028
  10. [10] I. M. GELFAND and M. I. GRAEV, Representations of a Group of the Second Order with Elements from a Locally Compact Field (Russian Math. Surveys, Vol. 18, 1963, pp. 29-100). Zbl0166.40201MR27 #5864
  11. [11] I. M. GELFAND, M. GRAEV and I. I. PIATETSKI-SHAPIRO, Automorphic Functions and Representation Theory, W. B. Sannders Co., Philadelphia, 1969. Zbl0177.18003
  12. [12] I. M. GELFAND and D. A. KAZHDAN, Representations of GL (n, K), in Lie Groups and Their Representations, Akademiai Kiado, Budapest, 1974, pp. 95-118. Zbl0348.22011
  13. [13] I. M. GELFAND and M. A. NEUMARK, Unitare Darstellungen der Klassichen Gruppen, German translation, Akademie Verlag, Berlin, 1957. Zbl0077.03405
  14. [14] H. JACQUET, Generic Representations, in Non-Commutative Harmonic Analysis (Lecture Notes in Math., Vol. 587, Springer-Verlag, Berlin, 1977, pp. 91-101). Zbl0357.22010MR58 #16985
  15. [15] H. JACQUET, Principal L-functions of the linear group, in Proc. Sympos. Pure Math., Vol. XXXIII, part 2, Amer. Math. Soc., Providence, R. I., 1979, pp. 63-86. Zbl0413.12007MR81f:22029
  16. [16] H. JACQUET, On the Residual Spectrum of GL(n), in Lie Group Representations II (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1984, pp. 185-208). Zbl0539.22016MR85k:22045
  17. [17] A. KNAPP and B. SPEH, Status of Classification of Irreducible Unitary Representations, in Harmonic Analysis (Proceedings, Minneapolis, 1981, Lecture Notes in Math., Vol. 908, Springer-Verlag, Berlin, 1982). Zbl0496.22018
  18. [18] D. MILIČIĆ, On C*-Algebras with Bounded Trace (Glasnik Mat., Vol. 8, (28), 1973, pp. 7-22). Zbl0265.46072MR48 #2781
  19. [19] C. MOEGLIN and J.-L. WALDSPURGER, Sur l'involution de Zelevinsky, preprint, Paris, 1985. 
  20. [20] G. I. OLSHANSKY, Intertwining Operators and Complementary Series in the Class of Representations of the General Group of Matrices Over a Locally Compact Division Algebra, Induced from Parabolic Subgroups (Mat. Sb., Vol. 93, No. 2, 1974, pp. 218-253). 
  21. [21] F. RODIER, Représentations de GL (n, k) où k est un corps p-adique [Séminaire Bourbaki, n° 587, 1982, (Astérisque, 92-93, 1982, pp. 201-218)]. Zbl0506.22019MR84h:22040
  22. [22] J. ROGAWSKI, Representations of GL (n) and Division Algebras Over a p-adic Field (Duke Math. J., Vol. 50, 1983, pp. 161-196). Zbl0523.22015MR84j:12018
  23. [23] B. SPEH, The Unitary Dual of GL (3, ℝ) and GL (4, ℝ) (Math. Ann., Vol. 258, 1981, pp. 113-133). Zbl0483.22005MR83i:22025
  24. [24] B. SPEH, Unitary Representations of GL (n, ℝ) with Non-Trivial (g, K) Cohomology (Invent. Math., Vol. 71, 1983, pp. 443-465). Zbl0505.22015MR84k:22024
  25. [25] E. M. STEIN, Analysis in Matrix Spaces and Some New Representations of SL (N, ℂ) (Ann. of Math., Vol. 86, 1967, pp. 461-490). Zbl0188.45303MR36 #2749
  26. [26] M. TADIĆ, The C*-algebra of SL (2, k) (Glasnik Mat., Vol. 17, (37), 1982, pp. 249-263). Zbl0504.22014MR84g:22038
  27. [27] M. TADIĆ, The Topology of the Dual Space of a Reductive Group Over a Local Field (Glasnik Mat., 18, (38), 1983, pp. 259-279). Zbl0536.22026MR85k:22043
  28. [28] M. TADIĆ, Proof of a Conjecture of Bernstein, (Math. Ann., Vol. 272, 1985, pp. 11-16). Zbl0547.22010MR87i:22049
  29. [29] M. TADIĆ, Unitary Dual of p-Adic GL (n). Proof of Bernstein Conjectures, (Bull. Amer. Math. Soc., Vol. 13, No. 1, 1985, pp. 39-42). Zbl0583.22008MR86j:22029
  30. [30] M. TADIĆ, Unitary Representations of General Linear Group Over Real and Complex Field, preprint, Bonn, 1985. 
  31. [31] D. A. VOGAN, Jr., Understanding the Unitary Dual, in Lie Group Representations I (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1024, Springer-Verlag, Berlin 1983, pp. 264-286). Zbl0527.22017MR86b:22027
  32. [32] N. R. WALLACH, Representations of Reductive Lie Groups, in Proc. Sympos. Pure Math., Vol. XXXIII, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 71-86). Zbl0421.22006MR80m:22024
  33. [33] A. V. ZELEVINSKY, Induced representations of reductive p-adic groups II (Ann. Scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 165-210). Zbl0441.22014MR83g:22012
  34. [34] A. V. ZELEVINSKY, p-adic analogue of the Kazhdan-Lusztig conjecture (Funct. Anal. Appl., Vol. 15, 1981, pp. 83-92). Zbl0476.22014MR84g:22039
  35. [35] J.-L. WALDSPURGER, Algèbres de Hecke et induites de représentations cuspidales, pour GL (N) (Journal für die Reine und angewandte Matematik, No. 370, 1986, pp. 127-191). Zbl0586.20020MR87m:22048

Citations in EuDML Documents

top
  1. Siddhartha Sahi, On Kirillov's conjecture for archimedean fields
  2. Guy Henniart, Induction automorphe globale pour les corps de nombres
  3. Marko Tadic, Spherical unitary dual of general linear group over non-Archimidean local field
  4. Paul J.jun. Sally, Marko Tadic, Induced representations and classification for G S p ( 2 , F ) and S p ( 2 , F )
  5. François Rodier, Sur les représentations non ramifiées des groupes réductifs p -adiques ; l’exemple de G S p ( 4 )
  6. Marko Tadić, Representations of p -adic symplectic groups
  7. Laurent Clozel, Progrès récents vers la classification du dual unitaire des groupes réductifs réels
  8. Yuval Z. Flicker, Distinguished representations and a Fourier summation formula
  9. C. Mœglin, J.-L. Waldspurger, Le spectre résiduel de GL ( n )
  10. Dubravka Ban, The Aubert involution and R-groups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.