Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
Annales scientifiques de l'École Normale Supérieure (1986)
- Volume: 19, Issue: 3, page 335-382
- ISSN: 0012-9593
Access Full Article
topHow to cite
topTadić, Marko. "Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)." Annales scientifiques de l'École Normale Supérieure 19.3 (1986): 335-382. <http://eudml.org/doc/82179>.
@article{Tadić1986,
author = {Tadić, Marko},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {local field; Langlands parameters; irreducible unitary representations; general linear group; non-Archimedean field; complementary series; unitary dual; Zelevinski parameters},
language = {eng},
number = {3},
pages = {335-382},
publisher = {Elsevier},
title = {Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)},
url = {http://eudml.org/doc/82179},
volume = {19},
year = {1986},
}
TY - JOUR
AU - Tadić, Marko
TI - Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1986
PB - Elsevier
VL - 19
IS - 3
SP - 335
EP - 382
LA - eng
KW - local field; Langlands parameters; irreducible unitary representations; general linear group; non-Archimedean field; complementary series; unitary dual; Zelevinski parameters
UR - http://eudml.org/doc/82179
ER -
References
top- [1] J. N. BERNSTEIN, All Reductive p-adic Groups Are Tame (Funct. Anal. Appl., Vol. 8, 1974, pp. 91-93). Zbl0298.43013MR50 #543
- [2] J. N. BERNSTEIN, P-Invariant Distributions on GL (N) and the Classification of Unitary Representations of GL (N) (Non-Archimedean Case), in Lie Group Representations II (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1984, pp. 50-102). Zbl0541.22009
- [3] J. N. BERNSTEIN, P. DELIGNE, D. KAZHDAN and M. F. VIGNERAS, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984. Zbl0544.00007
- [4] J. N. BERNSTEIN and A. V. ZELEVINSKY, Representations of the Group GL (n, F), where F Is a Local Non-Archimedean Field [Uspekhi Mat. Nauk, Vol. 31, No. 3, 1976, pp. 5-70 (= Russian Math. Surveys, Vol. 31, No. 3, 1976, pp. 1-68)]. Zbl0348.43007
- [5] J. N. BERNSTEIN and A. V. ZELEVINSKY, Induced Representations of Reductive p-adic Groups, I (Ann. Scient. Éc. Norm. Sup., Vol. 10, 1977, pp. 441-472). Zbl0412.22015MR58 #28310
- [6] P. CARTIER, Representations of p-adic Groups : a Survey, in Proc. Sympos. Pure Math., Vol. XXXIII, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 111-155. Zbl0421.22010MR81e:22029
- [7] W. CASSELMAN, Introduction to the Theory of Admissible Representations of p-adic Reductive Groups, preprint.
- [8] G. VAN DIJK, Computation of Certain Induced Characters of p-adic Groups (Math. Ann., Vol. 199, 1972, pp. 229-240). Zbl0231.22018MR49 #3043
- [9] D. FLATH, Decomposition of Representations into Tensor Products, in Proc. Sympos. Pure Math., Vol. XXXIII, part I, Amer. Math. Soc., Providence, R. I., 1979, pp. 179-183. Zbl0414.22019MR81f:22028
- [10] I. M. GELFAND and M. I. GRAEV, Representations of a Group of the Second Order with Elements from a Locally Compact Field (Russian Math. Surveys, Vol. 18, 1963, pp. 29-100). Zbl0166.40201MR27 #5864
- [11] I. M. GELFAND, M. GRAEV and I. I. PIATETSKI-SHAPIRO, Automorphic Functions and Representation Theory, W. B. Sannders Co., Philadelphia, 1969. Zbl0177.18003
- [12] I. M. GELFAND and D. A. KAZHDAN, Representations of GL (n, K), in Lie Groups and Their Representations, Akademiai Kiado, Budapest, 1974, pp. 95-118. Zbl0348.22011
- [13] I. M. GELFAND and M. A. NEUMARK, Unitare Darstellungen der Klassichen Gruppen, German translation, Akademie Verlag, Berlin, 1957. Zbl0077.03405
- [14] H. JACQUET, Generic Representations, in Non-Commutative Harmonic Analysis (Lecture Notes in Math., Vol. 587, Springer-Verlag, Berlin, 1977, pp. 91-101). Zbl0357.22010MR58 #16985
- [15] H. JACQUET, Principal L-functions of the linear group, in Proc. Sympos. Pure Math., Vol. XXXIII, part 2, Amer. Math. Soc., Providence, R. I., 1979, pp. 63-86. Zbl0413.12007MR81f:22029
- [16] H. JACQUET, On the Residual Spectrum of GL(n), in Lie Group Representations II (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1984, pp. 185-208). Zbl0539.22016MR85k:22045
- [17] A. KNAPP and B. SPEH, Status of Classification of Irreducible Unitary Representations, in Harmonic Analysis (Proceedings, Minneapolis, 1981, Lecture Notes in Math., Vol. 908, Springer-Verlag, Berlin, 1982). Zbl0496.22018
- [18] D. MILIČIĆ, On C*-Algebras with Bounded Trace (Glasnik Mat., Vol. 8, (28), 1973, pp. 7-22). Zbl0265.46072MR48 #2781
- [19] C. MOEGLIN and J.-L. WALDSPURGER, Sur l'involution de Zelevinsky, preprint, Paris, 1985.
- [20] G. I. OLSHANSKY, Intertwining Operators and Complementary Series in the Class of Representations of the General Group of Matrices Over a Locally Compact Division Algebra, Induced from Parabolic Subgroups (Mat. Sb., Vol. 93, No. 2, 1974, pp. 218-253).
- [21] F. RODIER, Représentations de GL (n, k) où k est un corps p-adique [Séminaire Bourbaki, n° 587, 1982, (Astérisque, 92-93, 1982, pp. 201-218)]. Zbl0506.22019MR84h:22040
- [22] J. ROGAWSKI, Representations of GL (n) and Division Algebras Over a p-adic Field (Duke Math. J., Vol. 50, 1983, pp. 161-196). Zbl0523.22015MR84j:12018
- [23] B. SPEH, The Unitary Dual of GL (3, ℝ) and GL (4, ℝ) (Math. Ann., Vol. 258, 1981, pp. 113-133). Zbl0483.22005MR83i:22025
- [24] B. SPEH, Unitary Representations of GL (n, ℝ) with Non-Trivial (g, K) Cohomology (Invent. Math., Vol. 71, 1983, pp. 443-465). Zbl0505.22015MR84k:22024
- [25] E. M. STEIN, Analysis in Matrix Spaces and Some New Representations of SL (N, ℂ) (Ann. of Math., Vol. 86, 1967, pp. 461-490). Zbl0188.45303MR36 #2749
- [26] M. TADIĆ, The C*-algebra of SL (2, k) (Glasnik Mat., Vol. 17, (37), 1982, pp. 249-263). Zbl0504.22014MR84g:22038
- [27] M. TADIĆ, The Topology of the Dual Space of a Reductive Group Over a Local Field (Glasnik Mat., 18, (38), 1983, pp. 259-279). Zbl0536.22026MR85k:22043
- [28] M. TADIĆ, Proof of a Conjecture of Bernstein, (Math. Ann., Vol. 272, 1985, pp. 11-16). Zbl0547.22010MR87i:22049
- [29] M. TADIĆ, Unitary Dual of p-Adic GL (n). Proof of Bernstein Conjectures, (Bull. Amer. Math. Soc., Vol. 13, No. 1, 1985, pp. 39-42). Zbl0583.22008MR86j:22029
- [30] M. TADIĆ, Unitary Representations of General Linear Group Over Real and Complex Field, preprint, Bonn, 1985.
- [31] D. A. VOGAN, Jr., Understanding the Unitary Dual, in Lie Group Representations I (Proceedings, University of Maryland, 1982-1983, Lecture Notes in Math., Vol. 1024, Springer-Verlag, Berlin 1983, pp. 264-286). Zbl0527.22017MR86b:22027
- [32] N. R. WALLACH, Representations of Reductive Lie Groups, in Proc. Sympos. Pure Math., Vol. XXXIII, part 1, Amer. Math. Soc., Providence, R. I., 1979, pp. 71-86). Zbl0421.22006MR80m:22024
- [33] A. V. ZELEVINSKY, Induced representations of reductive p-adic groups II (Ann. Scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 165-210). Zbl0441.22014MR83g:22012
- [34] A. V. ZELEVINSKY, p-adic analogue of the Kazhdan-Lusztig conjecture (Funct. Anal. Appl., Vol. 15, 1981, pp. 83-92). Zbl0476.22014MR84g:22039
- [35] J.-L. WALDSPURGER, Algèbres de Hecke et induites de représentations cuspidales, pour GL (N) (Journal für die Reine und angewandte Matematik, No. 370, 1986, pp. 127-191). Zbl0586.20020MR87m:22048
Citations in EuDML Documents
top- Siddhartha Sahi, On Kirillov's conjecture for archimedean fields
- Guy Henniart, Induction automorphe globale pour les corps de nombres
- Marko Tadic, Spherical unitary dual of general linear group over non-Archimidean local field
- Paul J.jun. Sally, Marko Tadic, Induced representations and classification for and
- François Rodier, Sur les représentations non ramifiées des groupes réductifs -adiques ; l’exemple de
- Marko Tadić, Representations of -adic symplectic groups
- Laurent Clozel, Progrès récents vers la classification du dual unitaire des groupes réductifs réels
- Yuval Z. Flicker, Distinguished representations and a Fourier summation formula
- C. Mœglin, J.-L. Waldspurger, Le spectre résiduel de
- Dubravka Ban, The Aubert involution and R-groups
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.