Universal topological stratification for the Pham example

James Damon; André Galligo

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 2, page 153-181
  • ISSN: 0037-9484

How to cite

top

Damon, James, and Galligo, André. "Universal topological stratification for the Pham example." Bulletin de la Société Mathématique de France 121.2 (1993): 153-181. <http://eudml.org/doc/87663>.

@article{Damon1993,
author = {Damon, James, Galligo, André},
journal = {Bulletin de la Société Mathématique de France},
keywords = {deformations; bimodal singularities; versal unfolding; versality discriminant; moduli space},
language = {eng},
number = {2},
pages = {153-181},
publisher = {Société mathématique de France},
title = {Universal topological stratification for the Pham example},
url = {http://eudml.org/doc/87663},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Damon, James
AU - Galligo, André
TI - Universal topological stratification for the Pham example
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 2
SP - 153
EP - 181
LA - eng
KW - deformations; bimodal singularities; versal unfolding; versality discriminant; moduli space
UR - http://eudml.org/doc/87663
ER -

References

top
  1. [A] ARNOLD (V.I.). — Local normal forms of functions, Invent. Math., t. 35, 1976, p. 87-109. Zbl0336.57022MR57 #7646
  2. [BBB] BALKENBORG (D.), BAUER (R.) and BILITEWSKI (F.J.). — Beitrage zur Hierarchie der bimodularen Singularitaten, Diplomarbeit, Univ. Bonn, 1984. 
  3. [B] BRIESKORN (E.). — Milnor Lattices and Dynkin Diagrams, Proc. Sympos. Pure Math., t. 40, I, 1983, p. 153-166. Zbl0527.14006MR85d:14002
  4. [D1] DAMON (J.). — Finite Determinacy and Topological Triviality I, Invent. Math., t. 62, 1980, p. 299-324; Sufficient Conditions and Topological Stability II, Compositio Math., t. 47, 1982, p. 101-132. Zbl0489.58003MR82f:58018
  5. [D2] DAMON (J.). — The Unfolding and determinacy theorems for Subgroups of A and K, Memoirs A.M.S., t. 50, n° 306, 1984, p. 233-254. Zbl0545.58010MR86b:58013
  6. [D3] DAMON (J.). — Topological Triviality and Versality for Subgroups of A and K, Memoirs A.M.S. 75, n° 389, 1988. Zbl0665.58005MR90a:58012
  7. [D4] DAMON (J.). — The versality Discriminant and local topological equivalence of mappings. - to appear in Annales Inst. Fourier. Zbl0703.58005
  8. [E] EBELING (W.). — On the monodromy groups of Singularities, Proc. Sympos. Pure Math., t. 40, I, 1983, p. 327-336. Zbl0518.32007MR85d:14003
  9. [E-W] EBELING (W.) and WALL (C.T.C.). — Kodaira Singularities and an extension of Arnold's Duality, Compositio Math., t. 56, 1985, p. 3-77. Zbl0586.14033MR87d:14027
  10. [G1] GALLIGO (A.). — A propos du théorème de préparation de Weierstrass, Lectures Notes in Math., t. 409, 1974, p. 543-579. Zbl0297.32003MR53 #5924
  11. [G2] GALLIGO (A.). — Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier, t. 29, 1979, p. 107-184. Zbl0412.32011MR81e:32009
  12. [G3] GALLIGO (A.). — Algorithmes de calcul de base standard, Prépublication Université de Nice, 1983. 
  13. [G-G] GOLUBITSKY (M.) and GUILLEMIN (V.). — Stable mappings and their Singularities, Grad. Texts Math. n° 14, Springer-Verlag, 1974. Zbl0294.58004MR49 #6269
  14. [L] LOOIJENGA (E.). — Semi-universal deformation of a simple elliptic hypersurface singularity I : unimodularity, Topology, t. 16, 1977, p. 257-262. Zbl0373.32004MR56 #8565
  15. [MAC] MACSYMA. — Reference Manual. - Version Ten, Symbolic Inc., 1984. 
  16. [MAR] MARTINET (J.). — Déploiement versels des applications différentiables et classifications des applications stables, in Singularités d'Applications Différentiables, Plan-sur-Bex, Springer Lecture Notes n° 535, pp. 1-44, 1975. Zbl0362.58004MR58 #31178
  17. [M1] MATHER (J.). — Stability of C∞-mappings, II Infinitesimal stability implies stability, Ann. of Math. 2, t. 89, 1969, p. 254-291 ; III Finitely determined map germs, IHES Publ. Math., t. 36, 1968 p. 127-156 ; IV Classification of stable germs by R-algebras, IHES Publ. Math., t. 37, 1969, p. 223-248 ; V Transversality, Adv. in Math. t. 4, 1970, p. 301-336. 
  18. [M2] MATHER (J.). — Stratification and mappings, in Dynamical Systems, ed. M. Peixoto, Academic Press, 1973, p. 195-232. Zbl0286.58003MR51 #4306
  19. [M3] MATHER (J.). — How to stratify Mappings and Jet Spaces, in Singularités d'Applications Différentiables, Plan-sur-Bex, Springer Lecture Notes n° 535, p. 128-176, 1975. Zbl0398.58008MR56 #13259
  20. [P] PHAM (F.). — Remarque sur l'équisingularité universelle. - Prépublication Université de Nice, 1970. 
  21. [R] RONGA (F.). — Une application topologiquement stable qui ne peut pas être approchée par une application différentiablement stable, C.R. Acad. Sci. Paris Sér. A-B, t. 287, 1978, p. 779-780. Zbl0397.58009MR80f:58014
  22. [T] THOM (R.). — Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., t. 75, 1, 1969, p. 240-284. Zbl0197.20502MR39 #970
  23. [W] WIRTHMULLER (K.). — Universel Topologische Triviale Deformationen. - Thesis, Univ. of Regensburg, 1980. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.