Riesz means on Lie groups and riemannian manifolds of nonnegative curvature

Georgios Alexopoulos; Noël Lohoué

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 2, page 209-223
  • ISSN: 0037-9484

How to cite

top

Alexopoulos, Georgios, and Lohoué, Noël. "Riesz means on Lie groups and riemannian manifolds of nonnegative curvature." Bulletin de la Société Mathématique de France 122.2 (1994): 209-223. <http://eudml.org/doc/87687>.

@article{Alexopoulos1994,
author = {Alexopoulos, Georgios, Lohoué, Noël},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Riesz means; left-invariant sub-laplacians; Laplace Beltrami operator; maximal operators},
language = {eng},
number = {2},
pages = {209-223},
publisher = {Société mathématique de France},
title = {Riesz means on Lie groups and riemannian manifolds of nonnegative curvature},
url = {http://eudml.org/doc/87687},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Alexopoulos, Georgios
AU - Lohoué, Noël
TI - Riesz means on Lie groups and riemannian manifolds of nonnegative curvature
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 2
SP - 209
EP - 223
LA - eng
KW - Riesz means; left-invariant sub-laplacians; Laplace Beltrami operator; maximal operators
UR - http://eudml.org/doc/87687
ER -

References

top
  1. [1] ALEXOPOULOS (G.). — Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc., (to appear). Zbl0794.43003
  2. [2] BERARD (P.). — Riesz means on Riemannian manifolds, Proc. Sympos. Pure Math., t. 36, 1980, p. 1-12. Zbl0443.58023MR81f:58038
  3. [3] BISHOP (R.) and CRITTENDEN (R.). — Geometry of manifolds. — Academic Press, New York, 1964. Zbl0132.16003MR29 #6401
  4. [4] CHEEGER (J.) and GROMOLL (D.). — The structure of complete manifolds of nonnegative curvature, Bull. Amer. Math. Soc., t. 74, 6, 1968, p. 413-443. Zbl0169.24101MR38 #635
  5. [5] CHEEGER (J.), GROMOV (M.) and TAYLOR (M.). — Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Differential Geom., t. 17, 1982, p. 15-53. Zbl0493.53035MR84b:58109
  6. [6] CHRIST (M.). — Lp bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., t. 328, 1, 1991, p. 73-81. Zbl0739.42010MR92k:42017
  7. [7] CHRIST (M.). — Weak type (1,1) bounds for rough operators, Ann. of Math. (2), t. 128, 1988, p. 19-42. Zbl0666.47027MR89m:42013
  8. [8] CHRIST (M.). — Weak type endpoint bounds for Bochner-Riesz operators, Rev. Mat. Iberoamericana, t. 3, 1987, p. 25-31. Zbl0726.42009MR90i:42024
  9. [9] CHRIST (M.) and SOGGE (C.). — Weak type L1 convergebce of eigenfunction expansions for pseudodifferential operators, Invent. Math., t. 94, 1988, p. 421-453. Zbl0678.35096MR89j:35096
  10. [10] CLERC (J.-L.). — Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, t. 24, 1974, p. 149-172. Zbl0273.22011MR50 #14065
  11. [11] COWLING (M.G.). — Harmonic analysis on semigroups, Ann. of Math., t. 117, 1983, p. 267-283. Zbl0528.42006MR84h:43004
  12. [12] DAVIES (E.B.). — Gausian upper bounds for the heat kernels of some second order differential operators on Riemannian manifolds, J. Funct. Anal., t. 80, 1988, p. 16-32. Zbl0759.58045MR90k:58213
  13. [13] DAVIS (K.M.) and CHANG (Y.-C.). — Lectures on Bochner-Riesz Means, London Mathematical Society Lecture Notes Series, vol. 114, Cambridge University Press. Zbl0629.42005MR88m:42031
  14. [14] FOLLAND (G.B.) and STEIN (E.). — Hardy spaces on Homogeneous groups. — Princeton University Press, N.J., 1982. Zbl0508.42025MR84h:43027
  15. [15] GIULINI (L.) and MAUCERI (G.). — Almost everywhere convergence of Riesz means on certain noncompact symmetric spaces, Ann. Mat. Pura Appl. (6), t. CLIX, 1991, p. 357-369. Zbl0796.43007MR93b:43008
  16. [16] GIULINI (L.) and TRAVAGLINI (G.). — Estimates for Riesz kernels of eigenfunction expansions of elliptic differential operators on compact manifolds, J. Funct. Anal., t. 96, 1991, p. 1-30. Zbl0726.58048MR92i:58176
  17. [17] GUIVARC'H (Y.). — Croissance polynômiale et périodes de fonctions harmoniques, Bull. Soc. Math. France, t. 101, 1973, p. 149-152. Zbl0294.43003MR51 #5841
  18. [18] HÖRMANDER (L.). — On the Riesz means of spectral functions and eigenfunction expansions for elliptic differenrial operators, Some Recent Advances in the Basic Sciences, p. 155-202, Yeshiva University, New York, 1966. 
  19. [19] HULANICKI (A.) and JENKINS (J.-W.). — Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc., t. 278, 1983, p. 703-715. Zbl0516.43010MR85f:22011
  20. [20] LI (P.) and YAU (S.T.). — On the parabolic kernel of the Schrödinger operator, Acta Math., t. 156, 1986, p. 153-201. Zbl0611.58045MR87f:58156
  21. [21] MAUCERI (G.). — Maximal operators and Riesz means on stratified groups, Sympos. Math., t. 29, 1984, p. 47-62. Zbl0659.22009MR89j:22016
  22. [22] MAUCERI (G.) and MEDA (S.). — Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, t. 6, 1990, p. 141-154. Zbl0763.43005MR92j:42014
  23. [23] MELROSE (R.). — Propagation for the wave group of a positive subelliptic second order differential operator, Proceedings Tanigushi International Symposium, Katata and Kyoto, S. Mizohata ed., 1984, p. 181-192. Zbl0696.35064MR89h:35177
  24. [24] NAGEL (A.), STEIN (E.) and WAINGER (S.). — Balls and metrics defined by vector fields I : Basic properties, Acta Math., t. 155, 1985, p. 103-147. Zbl0578.32044MR86k:46049
  25. [25] SEEGER (A.). — Endpoint estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J., t. 40, 2, 1991, p. 471-533. Zbl0737.42012MR92f:58166
  26. [26] SOGGE (C.). — On the convergence of Riesz means on compact manifolds, Ann. of Math. (2), t. 126, 1987, p. 439-447. Zbl0653.35068MR89b:35126
  27. [27] STEIN (E.). — Localization and summability of multiple Fourier series, Acta Math., t. 100, 1958, p. 93-147. Zbl0085.28401MR21 #4331
  28. [28] STEIN (E.). — Topics in Harmonic Analysis. — Princeton University Press, N.J., 1970. Zbl0193.10502
  29. [29] STEIN (E.) and WEISS (G.). — Introduction to Fourier Analysis on Euclidean Spaces. — Princeton University Press, Princeton, 1971. Zbl0232.42007MR46 #4102
  30. [30] VAROPOULOS (N.Th.). — Analysis on Lie groups, J. Funct. Anal., t. 76, 2, 1988, p. 346-410. Zbl0634.22008MR89i:22018
  31. [31] VAROPOULOS (N.Th.). — Small time gaussian estimates of heat diffusion kernels, part I : The semigroup technique, Bull. Sci. Math. (2), t. 113, 1989, p. 253-277. Zbl0703.58052
  32. [32] VAROPOULOS (N.Th.). — Small time gaussian estimates of heat diffusion kernels, part II : The theory of large deviations, J. Funct. Anal., t. 93, 1, 1990, p. 1-33. Zbl0712.58056
  33. [33] VAROPOULOS (N.Th.), SALOFF-COSTE (L.) and COULHON (T.). — Analysis and Geometry on Groups. — Cambridge Tracts in Mathematics. 
  34. [34] YOSIDA (K.). — Functional Analysis. — Springer-Verlag, 1978. MR58 #17765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.