Riesz means on Lie groups and riemannian manifolds of nonnegative curvature
Georgios Alexopoulos; Noël Lohoué
Bulletin de la Société Mathématique de France (1994)
- Volume: 122, Issue: 2, page 209-223
- ISSN: 0037-9484
Access Full Article
topHow to cite
topAlexopoulos, Georgios, and Lohoué, Noël. "Riesz means on Lie groups and riemannian manifolds of nonnegative curvature." Bulletin de la Société Mathématique de France 122.2 (1994): 209-223. <http://eudml.org/doc/87687>.
@article{Alexopoulos1994,
author = {Alexopoulos, Georgios, Lohoué, Noël},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Riesz means; left-invariant sub-laplacians; Laplace Beltrami operator; maximal operators},
language = {eng},
number = {2},
pages = {209-223},
publisher = {Société mathématique de France},
title = {Riesz means on Lie groups and riemannian manifolds of nonnegative curvature},
url = {http://eudml.org/doc/87687},
volume = {122},
year = {1994},
}
TY - JOUR
AU - Alexopoulos, Georgios
AU - Lohoué, Noël
TI - Riesz means on Lie groups and riemannian manifolds of nonnegative curvature
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 2
SP - 209
EP - 223
LA - eng
KW - Riesz means; left-invariant sub-laplacians; Laplace Beltrami operator; maximal operators
UR - http://eudml.org/doc/87687
ER -
References
top- [1] ALEXOPOULOS (G.). — Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc., (to appear). Zbl0794.43003
- [2] BERARD (P.). — Riesz means on Riemannian manifolds, Proc. Sympos. Pure Math., t. 36, 1980, p. 1-12. Zbl0443.58023MR81f:58038
- [3] BISHOP (R.) and CRITTENDEN (R.). — Geometry of manifolds. — Academic Press, New York, 1964. Zbl0132.16003MR29 #6401
- [4] CHEEGER (J.) and GROMOLL (D.). — The structure of complete manifolds of nonnegative curvature, Bull. Amer. Math. Soc., t. 74, 6, 1968, p. 413-443. Zbl0169.24101MR38 #635
- [5] CHEEGER (J.), GROMOV (M.) and TAYLOR (M.). — Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Differential Geom., t. 17, 1982, p. 15-53. Zbl0493.53035MR84b:58109
- [6] CHRIST (M.). — Lp bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., t. 328, 1, 1991, p. 73-81. Zbl0739.42010MR92k:42017
- [7] CHRIST (M.). — Weak type (1,1) bounds for rough operators, Ann. of Math. (2), t. 128, 1988, p. 19-42. Zbl0666.47027MR89m:42013
- [8] CHRIST (M.). — Weak type endpoint bounds for Bochner-Riesz operators, Rev. Mat. Iberoamericana, t. 3, 1987, p. 25-31. Zbl0726.42009MR90i:42024
- [9] CHRIST (M.) and SOGGE (C.). — Weak type L1 convergebce of eigenfunction expansions for pseudodifferential operators, Invent. Math., t. 94, 1988, p. 421-453. Zbl0678.35096MR89j:35096
- [10] CLERC (J.-L.). — Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier, t. 24, 1974, p. 149-172. Zbl0273.22011MR50 #14065
- [11] COWLING (M.G.). — Harmonic analysis on semigroups, Ann. of Math., t. 117, 1983, p. 267-283. Zbl0528.42006MR84h:43004
- [12] DAVIES (E.B.). — Gausian upper bounds for the heat kernels of some second order differential operators on Riemannian manifolds, J. Funct. Anal., t. 80, 1988, p. 16-32. Zbl0759.58045MR90k:58213
- [13] DAVIS (K.M.) and CHANG (Y.-C.). — Lectures on Bochner-Riesz Means, London Mathematical Society Lecture Notes Series, vol. 114, Cambridge University Press. Zbl0629.42005MR88m:42031
- [14] FOLLAND (G.B.) and STEIN (E.). — Hardy spaces on Homogeneous groups. — Princeton University Press, N.J., 1982. Zbl0508.42025MR84h:43027
- [15] GIULINI (L.) and MAUCERI (G.). — Almost everywhere convergence of Riesz means on certain noncompact symmetric spaces, Ann. Mat. Pura Appl. (6), t. CLIX, 1991, p. 357-369. Zbl0796.43007MR93b:43008
- [16] GIULINI (L.) and TRAVAGLINI (G.). — Estimates for Riesz kernels of eigenfunction expansions of elliptic differential operators on compact manifolds, J. Funct. Anal., t. 96, 1991, p. 1-30. Zbl0726.58048MR92i:58176
- [17] GUIVARC'H (Y.). — Croissance polynômiale et périodes de fonctions harmoniques, Bull. Soc. Math. France, t. 101, 1973, p. 149-152. Zbl0294.43003MR51 #5841
- [18] HÖRMANDER (L.). — On the Riesz means of spectral functions and eigenfunction expansions for elliptic differenrial operators, Some Recent Advances in the Basic Sciences, p. 155-202, Yeshiva University, New York, 1966.
- [19] HULANICKI (A.) and JENKINS (J.-W.). — Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc., t. 278, 1983, p. 703-715. Zbl0516.43010MR85f:22011
- [20] LI (P.) and YAU (S.T.). — On the parabolic kernel of the Schrödinger operator, Acta Math., t. 156, 1986, p. 153-201. Zbl0611.58045MR87f:58156
- [21] MAUCERI (G.). — Maximal operators and Riesz means on stratified groups, Sympos. Math., t. 29, 1984, p. 47-62. Zbl0659.22009MR89j:22016
- [22] MAUCERI (G.) and MEDA (S.). — Vector-valued multipliers on stratified groups, Rev. Mat. Iberoamericana, t. 6, 1990, p. 141-154. Zbl0763.43005MR92j:42014
- [23] MELROSE (R.). — Propagation for the wave group of a positive subelliptic second order differential operator, Proceedings Tanigushi International Symposium, Katata and Kyoto, S. Mizohata ed., 1984, p. 181-192. Zbl0696.35064MR89h:35177
- [24] NAGEL (A.), STEIN (E.) and WAINGER (S.). — Balls and metrics defined by vector fields I : Basic properties, Acta Math., t. 155, 1985, p. 103-147. Zbl0578.32044MR86k:46049
- [25] SEEGER (A.). — Endpoint estimates for multiplier transformations on compact manifolds, Indiana Univ. Math. J., t. 40, 2, 1991, p. 471-533. Zbl0737.42012MR92f:58166
- [26] SOGGE (C.). — On the convergence of Riesz means on compact manifolds, Ann. of Math. (2), t. 126, 1987, p. 439-447. Zbl0653.35068MR89b:35126
- [27] STEIN (E.). — Localization and summability of multiple Fourier series, Acta Math., t. 100, 1958, p. 93-147. Zbl0085.28401MR21 #4331
- [28] STEIN (E.). — Topics in Harmonic Analysis. — Princeton University Press, N.J., 1970. Zbl0193.10502
- [29] STEIN (E.) and WEISS (G.). — Introduction to Fourier Analysis on Euclidean Spaces. — Princeton University Press, Princeton, 1971. Zbl0232.42007MR46 #4102
- [30] VAROPOULOS (N.Th.). — Analysis on Lie groups, J. Funct. Anal., t. 76, 2, 1988, p. 346-410. Zbl0634.22008MR89i:22018
- [31] VAROPOULOS (N.Th.). — Small time gaussian estimates of heat diffusion kernels, part I : The semigroup technique, Bull. Sci. Math. (2), t. 113, 1989, p. 253-277. Zbl0703.58052
- [32] VAROPOULOS (N.Th.). — Small time gaussian estimates of heat diffusion kernels, part II : The theory of large deviations, J. Funct. Anal., t. 93, 1, 1990, p. 1-33. Zbl0712.58056
- [33] VAROPOULOS (N.Th.), SALOFF-COSTE (L.) and COULHON (T.). — Analysis and Geometry on Groups. — Cambridge Tracts in Mathematics.
- [34] YOSIDA (K.). — Functional Analysis. — Springer-Verlag, 1978. MR58 #17765
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.