Poincaré duality for - Lie superalgebras

Sophie Chemla

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 3, page 371-397
  • ISSN: 0037-9484

How to cite

top

Chemla, Sophie. "Poincaré duality for $k$-$A$ Lie superalgebras." Bulletin de la Société Mathématique de France 122.3 (1994): 371-397. <http://eudml.org/doc/87696>.

@article{Chemla1994,
author = {Chemla, Sophie},
journal = {Bulletin de la Société Mathématique de France},
keywords = {supercommutative superalgebras; smooth variety; sheaf of differential operators; differential forms; vector fields; equivalence of categories; Lie superalgebras; superalgebra of differential operators; enveloping superalgebras; smooth supermanifolds; induced representations},
language = {eng},
number = {3},
pages = {371-397},
publisher = {Société mathématique de France},
title = {Poincaré duality for $k$-$A$ Lie superalgebras},
url = {http://eudml.org/doc/87696},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Chemla, Sophie
TI - Poincaré duality for $k$-$A$ Lie superalgebras
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 3
SP - 371
EP - 397
LA - eng
KW - supercommutative superalgebras; smooth variety; sheaf of differential operators; differential forms; vector fields; equivalence of categories; Lie superalgebras; superalgebra of differential operators; enveloping superalgebras; smooth supermanifolds; induced representations
UR - http://eudml.org/doc/87696
ER -

References

top
  1. [Bo] BOREL (A.). &#x2014; Algebraic D-modules. &#x2014; Academic Press, 1987. Zbl0642.32001MR89g:32014
  2. [Bou] BOURBAKI (N.). &#x2014; Algèbre commutative, chap. 2. &#x2014; Hermann, 1961. Zbl0108.04002
  3. [B-C] BOE (B.D.) and COLLINGWOOD (D.H.). &#x2014; A comparison theorem for the structures of induced representations, J. Algebra, t. 94, 1985, p. 511-545. Zbl0606.17007MR87b:22026a
  4. [B-L] BROWN (K.A.) and LEVASSEUR (T.). &#x2014; Cohomology of bimodules over enveloping algebras, Math. Z., t. 189, 1985, p. 393-413. Zbl0566.17005MR86m:17011
  5. [Br] BRYLINSKI (J.L.). &#x2014; A differential complex for Poisson manifolds, J. Differential Geom., t. 28, 1988, p. 93-114. Zbl0634.58029MR89m:58006
  6. [C] CHEMLA (S.). &#x2014; Propriétés de dualité dans les représentations coinduites de superalgèbres de Lie, Thèse, Université Paris 7, 1990. 
  7. [C-S] COLLINGWOOD (D.H.) and SHELTON (B.). &#x2014; A duality theorem for extensions of induced highest weight modules, Pacific J. Math., t. 146, 2, 1990, p. 227-237. Zbl0733.17005MR91m:22029
  8. [D1] DUFLO (M.). &#x2014; Sur les idéaux induits dans les algèbres enveloppantes, Invent. Math., t. 67, 1982, p. 385-393. Zbl0501.17006MR83m:17005
  9. [D2] DUFLO (M.). &#x2014; Open problems in representation theory of Lie groups, in Proceedings of the Eighteenth International Symposium, division of mathematics, the Taniguchi Foundation. 
  10. [F] FEL'DMAN (G.L.). &#x2014; Global dimension of rings of differential operators, Trans. Moscow Math. Soc., t. 1, 1982, p. 123-147. Zbl0484.13020
  11. [Fu] FUKS (D.B.). &#x2014; Cohomology of infinite dimensional Lie algebras, Contemporary Soviet Mathematics, 1986. Zbl0667.17005MR88b:17001
  12. [G] GYOJA (A.). &#x2014; A duality theorem for homomorphisms between generalized Verma modules, Preprint Kyoto University. 
  13. [H] HARTSHORNE (R.). &#x2014; Algebraic geometry. &#x2014; Graduate Text in Mathematics, 1977. Zbl0367.14001MR57 #3116
  14. [Hu1] HUEBSCHMANN (J.). &#x2014; Poisson cohomology and quantization, J. Reine Angew. Math., t. 408, 1990, p. 57-113. Zbl0699.53037MR92e:17027
  15. [Hu2] HUEBSCHMANN (J.). &#x2014; Some remarks about Poisson homology, Preprint Universität Heidelberg, 1990. 
  16. [Hus] HUSSEMOLLER (D.). &#x2014; Fiber bundles. &#x2014; Graduate Texts in Mathematics, 1966. 
  17. [K] KEMPF (G.R.). &#x2014; The Ext-dual of a Verma module is a Verma module, J. Pure Appl. Algebra, t. 75, 1991, p. 47-49. Zbl0758.17004MR93b:17023
  18. [Kn] KNAPP (A.). &#x2014; Lie groups, Lie algebras and cohomology. &#x2014; Princeton University Press, 1988. Zbl0648.22010MR89j:22034
  19. [Ko] KOSTANT (B.). &#x2014; Graded manifolds, graded Lie theory and prequantization, Lecture Notes in Math., t. 570, 1975, p. 177-306. Zbl0358.53024MR58 #28326
  20. [Kos] KOSZUL (J.L.). &#x2014; Crochet de Schouten-Nijenhuis et cohomologie, in É. Cartan et les mathématiciens d'aujourd'hui, Lyon 25-29 juin 1984, Astérisque hors-série, 1985, p. 251-271. Zbl0615.58029
  21. [L1] LEITES (D.A.). &#x2014; Introduction to the theory of supermanifolds, Uspeki Mat. Nauk, t. 35, 1, 1980, p. 3-57. Zbl0439.58007MR81j:58003
  22. [L2] LEITES (D.A.). &#x2014; Spectra of graded commutative ring, Uspeki Mat. Nauk, t. 29, 3, 1974, p. 209-210. Zbl0326.14001MR53 #2966
  23. [M] MANIN (Y.I.). &#x2014; Gauge field theory and complex geometry, A Series of comprehensive studies in mathematics, Springer-Verlag, 1988. Zbl0641.53001MR89d:32001
  24. [P] PENKOV (I.B.). &#x2014; D-modules on supermanifolds, Invent. Math., t. 71, 1983, p. 501-512. Zbl0528.32012MR85b:32015
  25. [R] RINEHART (G.S.). &#x2014; Differential form on general commutative algebras, Trans. Amer. Math. Soc., t. 108, 1963, p. 195-222. Zbl0113.26204MR27 #4850
  26. [S] SWAN (R.G.). &#x2014; Vector bundles and projective modules, Trans. Amer. Math. Soc., t. 115, 2, 1962, p. 261-277. Zbl0109.41601MR26 #785
  27. [We] WELLS (R.O.). &#x2014; Differential analysis on complex manifolds. &#x2014; Prentice-Hall, Inc., 1973. Zbl0262.32005MR58 #24309a

NotesEmbed ?

top

You must be logged in to post comments.