Poincaré duality for k - A Lie superalgebras

Sophie Chemla

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 3, page 371-397
  • ISSN: 0037-9484

How to cite


Chemla, Sophie. "Poincaré duality for $k$-$A$ Lie superalgebras." Bulletin de la Société Mathématique de France 122.3 (1994): 371-397. <http://eudml.org/doc/87696>.

author = {Chemla, Sophie},
journal = {Bulletin de la Société Mathématique de France},
keywords = {supercommutative superalgebras; smooth variety; sheaf of differential operators; differential forms; vector fields; equivalence of categories; Lie superalgebras; superalgebra of differential operators; enveloping superalgebras; smooth supermanifolds; induced representations},
language = {eng},
number = {3},
pages = {371-397},
publisher = {Société mathématique de France},
title = {Poincaré duality for $k$-$A$ Lie superalgebras},
url = {http://eudml.org/doc/87696},
volume = {122},
year = {1994},

AU - Chemla, Sophie
TI - Poincaré duality for $k$-$A$ Lie superalgebras
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 3
SP - 371
EP - 397
LA - eng
KW - supercommutative superalgebras; smooth variety; sheaf of differential operators; differential forms; vector fields; equivalence of categories; Lie superalgebras; superalgebra of differential operators; enveloping superalgebras; smooth supermanifolds; induced representations
UR - http://eudml.org/doc/87696
ER -


  1. [Bo] BOREL (A.). &#x2014; Algebraic D-modules. &#x2014; Academic Press, 1987. Zbl0642.32001MR89g:32014
  2. [Bou] BOURBAKI (N.). &#x2014; Algèbre commutative, chap. 2. &#x2014; Hermann, 1961. Zbl0108.04002
  3. [B-C] BOE (B.D.) and COLLINGWOOD (D.H.). &#x2014; A comparison theorem for the structures of induced representations, J. Algebra, t. 94, 1985, p. 511-545. Zbl0606.17007MR87b:22026a
  4. [B-L] BROWN (K.A.) and LEVASSEUR (T.). &#x2014; Cohomology of bimodules over enveloping algebras, Math. Z., t. 189, 1985, p. 393-413. Zbl0566.17005MR86m:17011
  5. [Br] BRYLINSKI (J.L.). &#x2014; A differential complex for Poisson manifolds, J. Differential Geom., t. 28, 1988, p. 93-114. Zbl0634.58029MR89m:58006
  6. [C] CHEMLA (S.). &#x2014; Propriétés de dualité dans les représentations coinduites de superalgèbres de Lie, Thèse, Université Paris 7, 1990. 
  7. [C-S] COLLINGWOOD (D.H.) and SHELTON (B.). &#x2014; A duality theorem for extensions of induced highest weight modules, Pacific J. Math., t. 146, 2, 1990, p. 227-237. Zbl0733.17005MR91m:22029
  8. [D1] DUFLO (M.). &#x2014; Sur les idéaux induits dans les algèbres enveloppantes, Invent. Math., t. 67, 1982, p. 385-393. Zbl0501.17006MR83m:17005
  9. [D2] DUFLO (M.). &#x2014; Open problems in representation theory of Lie groups, in Proceedings of the Eighteenth International Symposium, division of mathematics, the Taniguchi Foundation. 
  10. [F] FEL'DMAN (G.L.). &#x2014; Global dimension of rings of differential operators, Trans. Moscow Math. Soc., t. 1, 1982, p. 123-147. Zbl0484.13020
  11. [Fu] FUKS (D.B.). &#x2014; Cohomology of infinite dimensional Lie algebras, Contemporary Soviet Mathematics, 1986. Zbl0667.17005MR88b:17001
  12. [G] GYOJA (A.). &#x2014; A duality theorem for homomorphisms between generalized Verma modules, Preprint Kyoto University. 
  13. [H] HARTSHORNE (R.). &#x2014; Algebraic geometry. &#x2014; Graduate Text in Mathematics, 1977. Zbl0367.14001MR57 #3116
  14. [Hu1] HUEBSCHMANN (J.). &#x2014; Poisson cohomology and quantization, J. Reine Angew. Math., t. 408, 1990, p. 57-113. Zbl0699.53037MR92e:17027
  15. [Hu2] HUEBSCHMANN (J.). &#x2014; Some remarks about Poisson homology, Preprint Universität Heidelberg, 1990. 
  16. [Hus] HUSSEMOLLER (D.). &#x2014; Fiber bundles. &#x2014; Graduate Texts in Mathematics, 1966. 
  17. [K] KEMPF (G.R.). &#x2014; The Ext-dual of a Verma module is a Verma module, J. Pure Appl. Algebra, t. 75, 1991, p. 47-49. Zbl0758.17004MR93b:17023
  18. [Kn] KNAPP (A.). &#x2014; Lie groups, Lie algebras and cohomology. &#x2014; Princeton University Press, 1988. Zbl0648.22010MR89j:22034
  19. [Ko] KOSTANT (B.). &#x2014; Graded manifolds, graded Lie theory and prequantization, Lecture Notes in Math., t. 570, 1975, p. 177-306. Zbl0358.53024MR58 #28326
  20. [Kos] KOSZUL (J.L.). &#x2014; Crochet de Schouten-Nijenhuis et cohomologie, in É. Cartan et les mathématiciens d'aujourd'hui, Lyon 25-29 juin 1984, Astérisque hors-série, 1985, p. 251-271. Zbl0615.58029
  21. [L1] LEITES (D.A.). &#x2014; Introduction to the theory of supermanifolds, Uspeki Mat. Nauk, t. 35, 1, 1980, p. 3-57. Zbl0439.58007MR81j:58003
  22. [L2] LEITES (D.A.). &#x2014; Spectra of graded commutative ring, Uspeki Mat. Nauk, t. 29, 3, 1974, p. 209-210. Zbl0326.14001MR53 #2966
  23. [M] MANIN (Y.I.). &#x2014; Gauge field theory and complex geometry, A Series of comprehensive studies in mathematics, Springer-Verlag, 1988. Zbl0641.53001MR89d:32001
  24. [P] PENKOV (I.B.). &#x2014; D-modules on supermanifolds, Invent. Math., t. 71, 1983, p. 501-512. Zbl0528.32012MR85b:32015
  25. [R] RINEHART (G.S.). &#x2014; Differential form on general commutative algebras, Trans. Amer. Math. Soc., t. 108, 1963, p. 195-222. Zbl0113.26204MR27 #4850
  26. [S] SWAN (R.G.). &#x2014; Vector bundles and projective modules, Trans. Amer. Math. Soc., t. 115, 2, 1962, p. 261-277. Zbl0109.41601MR26 #785
  27. [We] WELLS (R.O.). &#x2014; Differential analysis on complex manifolds. &#x2014; Prentice-Hall, Inc., 1973. Zbl0262.32005MR58 #24309a

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.