Poincaré duality for - Lie superalgebras
Bulletin de la Société Mathématique de France (1994)
- Volume: 122, Issue: 3, page 371-397
- ISSN: 0037-9484
Access Full Article
topHow to cite
topReferences
top- [Bo] BOREL (A.). — Algebraic D-modules. — Academic Press, 1987. Zbl0642.32001MR89g:32014
- [Bou] BOURBAKI (N.). — Algèbre commutative, chap. 2. — Hermann, 1961. Zbl0108.04002
- [B-C] BOE (B.D.) and COLLINGWOOD (D.H.). — A comparison theorem for the structures of induced representations, J. Algebra, t. 94, 1985, p. 511-545. Zbl0606.17007MR87b:22026a
- [B-L] BROWN (K.A.) and LEVASSEUR (T.). — Cohomology of bimodules over enveloping algebras, Math. Z., t. 189, 1985, p. 393-413. Zbl0566.17005MR86m:17011
- [Br] BRYLINSKI (J.L.). — A differential complex for Poisson manifolds, J. Differential Geom., t. 28, 1988, p. 93-114. Zbl0634.58029MR89m:58006
- [C] CHEMLA (S.). — Propriétés de dualité dans les représentations coinduites de superalgèbres de Lie, Thèse, Université Paris 7, 1990.
- [C-S] COLLINGWOOD (D.H.) and SHELTON (B.). — A duality theorem for extensions of induced highest weight modules, Pacific J. Math., t. 146, 2, 1990, p. 227-237. Zbl0733.17005MR91m:22029
- [D1] DUFLO (M.). — Sur les idéaux induits dans les algèbres enveloppantes, Invent. Math., t. 67, 1982, p. 385-393. Zbl0501.17006MR83m:17005
- [D2] DUFLO (M.). — Open problems in representation theory of Lie groups, in Proceedings of the Eighteenth International Symposium, division of mathematics, the Taniguchi Foundation.
- [F] FEL'DMAN (G.L.). — Global dimension of rings of differential operators, Trans. Moscow Math. Soc., t. 1, 1982, p. 123-147. Zbl0484.13020
- [Fu] FUKS (D.B.). — Cohomology of infinite dimensional Lie algebras, Contemporary Soviet Mathematics, 1986. Zbl0667.17005MR88b:17001
- [G] GYOJA (A.). — A duality theorem for homomorphisms between generalized Verma modules, Preprint Kyoto University.
- [H] HARTSHORNE (R.). — Algebraic geometry. — Graduate Text in Mathematics, 1977. Zbl0367.14001MR57 #3116
- [Hu1] HUEBSCHMANN (J.). — Poisson cohomology and quantization, J. Reine Angew. Math., t. 408, 1990, p. 57-113. Zbl0699.53037MR92e:17027
- [Hu2] HUEBSCHMANN (J.). — Some remarks about Poisson homology, Preprint Universität Heidelberg, 1990.
- [Hus] HUSSEMOLLER (D.). — Fiber bundles. — Graduate Texts in Mathematics, 1966.
- [K] KEMPF (G.R.). — The Ext-dual of a Verma module is a Verma module, J. Pure Appl. Algebra, t. 75, 1991, p. 47-49. Zbl0758.17004MR93b:17023
- [Kn] KNAPP (A.). — Lie groups, Lie algebras and cohomology. — Princeton University Press, 1988. Zbl0648.22010MR89j:22034
- [Ko] KOSTANT (B.). — Graded manifolds, graded Lie theory and prequantization, Lecture Notes in Math., t. 570, 1975, p. 177-306. Zbl0358.53024MR58 #28326
- [Kos] KOSZUL (J.L.). — Crochet de Schouten-Nijenhuis et cohomologie, in É. Cartan et les mathématiciens d'aujourd'hui, Lyon 25-29 juin 1984, Astérisque hors-série, 1985, p. 251-271. Zbl0615.58029
- [L1] LEITES (D.A.). — Introduction to the theory of supermanifolds, Uspeki Mat. Nauk, t. 35, 1, 1980, p. 3-57. Zbl0439.58007MR81j:58003
- [L2] LEITES (D.A.). — Spectra of graded commutative ring, Uspeki Mat. Nauk, t. 29, 3, 1974, p. 209-210. Zbl0326.14001MR53 #2966
- [M] MANIN (Y.I.). — Gauge field theory and complex geometry, A Series of comprehensive studies in mathematics, Springer-Verlag, 1988. Zbl0641.53001MR89d:32001
- [P] PENKOV (I.B.). — D-modules on supermanifolds, Invent. Math., t. 71, 1983, p. 501-512. Zbl0528.32012MR85b:32015
- [R] RINEHART (G.S.). — Differential form on general commutative algebras, Trans. Amer. Math. Soc., t. 108, 1963, p. 195-222. Zbl0113.26204MR27 #4850
- [S] SWAN (R.G.). — Vector bundles and projective modules, Trans. Amer. Math. Soc., t. 115, 2, 1962, p. 261-277. Zbl0109.41601MR26 #785
- [We] WELLS (R.O.). — Differential analysis on complex manifolds. — Prentice-Hall, Inc., 1973. Zbl0262.32005MR58 #24309a