Linear models for reductive group actions on affine quadrics

Michael Doebeli

Bulletin de la Société Mathématique de France (1994)

  • Volume: 122, Issue: 4, page 505-531
  • ISSN: 0037-9484

How to cite

top

Doebeli, Michael. "Linear models for reductive group actions on affine quadrics." Bulletin de la Société Mathématique de France 122.4 (1994): 505-531. <http://eudml.org/doc/87702>.

@article{Doebeli1994,
author = {Doebeli, Michael},
journal = {Bulletin de la Société Mathématique de France},
keywords = {reductive group action on a complex affine quadric; linearisation problem; quotients; slice representations},
language = {eng},
number = {4},
pages = {505-531},
publisher = {Société mathématique de France},
title = {Linear models for reductive group actions on affine quadrics},
url = {http://eudml.org/doc/87702},
volume = {122},
year = {1994},
}

TY - JOUR
AU - Doebeli, Michael
TI - Linear models for reductive group actions on affine quadrics
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 4
SP - 505
EP - 531
LA - eng
KW - reductive group action on a complex affine quadric; linearisation problem; quotients; slice representations
UR - http://eudml.org/doc/87702
ER -

References

top
  1. [1] ASOH (T.). — Compact transformation groups on ℤ2-cohomology spheres with orbit of codimension 1, Hiroshima Math. J., t. 11, 1981, p. 571-616. Zbl0515.57021MR83b:57021
  2. [2] BOREL (A.). — Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc., t. 55, 1949, p. 580-586. Zbl0034.01603MR10,680c
  3. [3] BOREL (A.). — Le plan projectif des octaves et les sphères comme espaces homogènes, C.R. Acad. Sci. Paris, t. 250, 1950, p. 1378-1381. Zbl0041.52203MR11,640c
  4. [4] BOREL (A.). — Les bouts des espaces homogènes de groupes de Lie, Ann. of Math., t. 58, 1953, p. 443-457. Zbl0053.13002MR15,199c
  5. [5] BOREL (A.). — Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., t. 57, 1953, p. 115-207. Zbl0052.40001MR14,490e
  6. [6] BOREL (A.). — Seminar on Transformation Groups. — Princeton University Press, Princeton, New Jersey, 1960. Zbl0091.37202MR22 #7129
  7. [7] BREDON (G.E.). — On homogenous cohomology spheres, Ann. of Math., t. 73, 1961, p. 556-565. Zbl0102.38701MR23 #A243
  8. [8] DADOK (J.). — Orthogonal polar representations, Trans. Am. Math. Soc., t. 288, 1985, p. 125-137. MR86k:22019
  9. [9] DADOK (J.) and KAC (V.). — Polar representations, J. Algebra, t. 92, 1985, p. 504-524. Zbl0611.22009MR86e:14023
  10. [10] GIZATULLIN (M.H.) and DANILOV (V.I.). — Automorphisms of affine surfaces II, Math. USSR Isv., t. 11, 1977, p. 51-98. Zbl0379.14002MR55 #10469
  11. [11] KAMBAYASHI (T.). — Automorphism group of a polynomial ring and algebraic group action on affine space, J. Algebra, t. 60, 1979, p. 439-451. Zbl0429.14017MR81e:14026
  12. [12] KNOP (F.). — Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. math., t. 105, 1991, p. 217-220. Zbl0739.20019MR92c:14046
  13. [13] KRAFT (H.). — Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1, Vieweg, Braunschweig/Wiesbaden, 1984. Zbl0569.14003MR86j:14006
  14. [14] KRAFT (H.). — Algebraic automorphisms of affine space, Topological methods in algebraic transformation groups, (eds. H. Kraft, T. Petrie, G. W. Schwarz), Progress in Mathematics, vol. 80, Birkhäuser Verlag, Basel-Boston, 1989, p. 81-105. Zbl0719.14030MR91g:14044
  15. [15] KRAFT (H.), PETRIE (T.) and RANDALL (J.D.). — Quotient Varieties, Adv. Math., t. 74, 1989, p. 145-162. Zbl0691.14029MR90b:14057
  16. [16] KRAFT (H.) and SCHWARTZ (G.W.). — Reductive group actions with 1-dimensional quotient, Inst. Hautes Études Sci. Publ. Math., t. 76, 1992, p. 1-97. Zbl0783.14026MR94e:14065
  17. [17] LITTELMANN (P.). — Koreguläre und äquidimensionale Darstellungen, J. Algebra, t. 123, 1989, p. 193-222. Zbl0688.14042MR90e:20039
  18. [18] LUNA (D.). — Slices étales, Bull. Soc. Math. France, t. 33, 1973, p. 81-105. Zbl0286.14014MR49 #7269
  19. [19] MONTGOMERY (D.) and SAMELSON (H.). — Transformation groups of spheres, Ann. of Math., t. 44, 1943, p. 454-470. Zbl0063.04077MR5,60b
  20. [20] MOSTOW (G.D.). — On covariant fiberings of Klein spaces II, Amer. J. Math., t. 84, 1962, p. 466-474. Zbl0123.16303MR26 #257
  21. [21] PONCET (J.). — Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comm. Math. Helv., t. 33, 1959, p. 109-120. Zbl0084.19006MR21 #2708
  22. [22] SCHWARTZ (G.W.). — Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., t. 51, 1978, p. 37-135. Zbl0449.57009
  23. [23] SCHWARTZ (G.W.). — Exotic algebraic group actions, C. R. Acad. Sci. Paris, t. 309, 1989, p. 89-94. Zbl0688.14040MR91b:14066
  24. [24] SLODOWY (P.). — Der Scheibensatz für algebraische Transformations-gruppen, Algebraic Transformation Groups and Invariant Theory, DMV Seminar vol. 13, Birkhäuser Verlag, Basel-Boston, 1989, p. 89-113. Zbl0722.14031MR1044587
  25. [25] WANG (H.C.). — Compact transformation groups of Sn with an (n − 1)-dimensional orbit, Amer. J. Math., t. 82, 1960, p. 698-748. Zbl0134.19404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.