Linear models for reductive group actions on affine quadrics
Bulletin de la Société Mathématique de France (1994)
- Volume: 122, Issue: 4, page 505-531
- ISSN: 0037-9484
Access Full Article
topHow to cite
topDoebeli, Michael. "Linear models for reductive group actions on affine quadrics." Bulletin de la Société Mathématique de France 122.4 (1994): 505-531. <http://eudml.org/doc/87702>.
@article{Doebeli1994,
author = {Doebeli, Michael},
journal = {Bulletin de la Société Mathématique de France},
keywords = {reductive group action on a complex affine quadric; linearisation problem; quotients; slice representations},
language = {eng},
number = {4},
pages = {505-531},
publisher = {Société mathématique de France},
title = {Linear models for reductive group actions on affine quadrics},
url = {http://eudml.org/doc/87702},
volume = {122},
year = {1994},
}
TY - JOUR
AU - Doebeli, Michael
TI - Linear models for reductive group actions on affine quadrics
JO - Bulletin de la Société Mathématique de France
PY - 1994
PB - Société mathématique de France
VL - 122
IS - 4
SP - 505
EP - 531
LA - eng
KW - reductive group action on a complex affine quadric; linearisation problem; quotients; slice representations
UR - http://eudml.org/doc/87702
ER -
References
top- [1] ASOH (T.). — Compact transformation groups on ℤ2-cohomology spheres with orbit of codimension 1, Hiroshima Math. J., t. 11, 1981, p. 571-616. Zbl0515.57021MR83b:57021
- [2] BOREL (A.). — Some remarks about Lie groups transitive on spheres and tori, Bull. Amer. Math. Soc., t. 55, 1949, p. 580-586. Zbl0034.01603MR10,680c
- [3] BOREL (A.). — Le plan projectif des octaves et les sphères comme espaces homogènes, C.R. Acad. Sci. Paris, t. 250, 1950, p. 1378-1381. Zbl0041.52203MR11,640c
- [4] BOREL (A.). — Les bouts des espaces homogènes de groupes de Lie, Ann. of Math., t. 58, 1953, p. 443-457. Zbl0053.13002MR15,199c
- [5] BOREL (A.). — Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., t. 57, 1953, p. 115-207. Zbl0052.40001MR14,490e
- [6] BOREL (A.). — Seminar on Transformation Groups. — Princeton University Press, Princeton, New Jersey, 1960. Zbl0091.37202MR22 #7129
- [7] BREDON (G.E.). — On homogenous cohomology spheres, Ann. of Math., t. 73, 1961, p. 556-565. Zbl0102.38701MR23 #A243
- [8] DADOK (J.). — Orthogonal polar representations, Trans. Am. Math. Soc., t. 288, 1985, p. 125-137. MR86k:22019
- [9] DADOK (J.) and KAC (V.). — Polar representations, J. Algebra, t. 92, 1985, p. 504-524. Zbl0611.22009MR86e:14023
- [10] GIZATULLIN (M.H.) and DANILOV (V.I.). — Automorphisms of affine surfaces II, Math. USSR Isv., t. 11, 1977, p. 51-98. Zbl0379.14002MR55 #10469
- [11] KAMBAYASHI (T.). — Automorphism group of a polynomial ring and algebraic group action on affine space, J. Algebra, t. 60, 1979, p. 439-451. Zbl0429.14017MR81e:14026
- [12] KNOP (F.). — Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. math., t. 105, 1991, p. 217-220. Zbl0739.20019MR92c:14046
- [13] KRAFT (H.). — Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik D1, Vieweg, Braunschweig/Wiesbaden, 1984. Zbl0569.14003MR86j:14006
- [14] KRAFT (H.). — Algebraic automorphisms of affine space, Topological methods in algebraic transformation groups, (eds. H. Kraft, T. Petrie, G. W. Schwarz), Progress in Mathematics, vol. 80, Birkhäuser Verlag, Basel-Boston, 1989, p. 81-105. Zbl0719.14030MR91g:14044
- [15] KRAFT (H.), PETRIE (T.) and RANDALL (J.D.). — Quotient Varieties, Adv. Math., t. 74, 1989, p. 145-162. Zbl0691.14029MR90b:14057
- [16] KRAFT (H.) and SCHWARTZ (G.W.). — Reductive group actions with 1-dimensional quotient, Inst. Hautes Études Sci. Publ. Math., t. 76, 1992, p. 1-97. Zbl0783.14026MR94e:14065
- [17] LITTELMANN (P.). — Koreguläre und äquidimensionale Darstellungen, J. Algebra, t. 123, 1989, p. 193-222. Zbl0688.14042MR90e:20039
- [18] LUNA (D.). — Slices étales, Bull. Soc. Math. France, t. 33, 1973, p. 81-105. Zbl0286.14014MR49 #7269
- [19] MONTGOMERY (D.) and SAMELSON (H.). — Transformation groups of spheres, Ann. of Math., t. 44, 1943, p. 454-470. Zbl0063.04077MR5,60b
- [20] MOSTOW (G.D.). — On covariant fiberings of Klein spaces II, Amer. J. Math., t. 84, 1962, p. 466-474. Zbl0123.16303MR26 #257
- [21] PONCET (J.). — Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes, Comm. Math. Helv., t. 33, 1959, p. 109-120. Zbl0084.19006MR21 #2708
- [22] SCHWARTZ (G.W.). — Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., t. 51, 1978, p. 37-135. Zbl0449.57009
- [23] SCHWARTZ (G.W.). — Exotic algebraic group actions, C. R. Acad. Sci. Paris, t. 309, 1989, p. 89-94. Zbl0688.14040MR91b:14066
- [24] SLODOWY (P.). — Der Scheibensatz für algebraische Transformations-gruppen, Algebraic Transformation Groups and Invariant Theory, DMV Seminar vol. 13, Birkhäuser Verlag, Basel-Boston, 1989, p. 89-113. Zbl0722.14031MR1044587
- [25] WANG (H.C.). — Compact transformation groups of Sn with an (n − 1)-dimensional orbit, Amer. J. Math., t. 82, 1960, p. 698-748. Zbl0134.19404
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.