The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Linear models for reductive group actions on affine quadrics”

Fixed points for reductive group actions on acyclic varieties

Martin Fankhauser (1995)

Annales de l'institut Fourier

Similarity:

Let X be a smooth, affine complex variety, which, considered as a complex manifold, has the singular -cohomology of a point. Suppose that G is a complex algebraic group acting algebraically on X . Our main results are the following: if G is semi-simple, then the generic fiber of the quotient map π : X X / / G contains a dense orbit. If G is connected and reductive, then the action has fixed points if dim X / / G 3 .

Reductive group actions on affine varieties and their doubling

Dmitri I. Panyushev (1995)

Annales de l'institut Fourier

Similarity:

We study G -actions of the form ( G : X × X * ) , where X * is the dual (to X ) G -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action ( G : X ) is given. It is shown that the doubled actions have a number of nice properties, if X is spherical or of complexity one.