Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems
Bulletin de la Société Mathématique de France (1995)
- Volume: 123, Issue: 4, page 477-491
- ISSN: 0037-9484
Access Full Article
topHow to cite
topMokkadem, Abdelkader. "Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems." Bulletin de la Société Mathématique de France 123.4 (1995): 477-491. <http://eudml.org/doc/87725>.
@article{Mokkadem1995,
author = {Mokkadem, Abdelkader},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear system; controllability; accessibility; discrete-time; algebraic sets; semi-diffeomorphism},
language = {eng},
number = {4},
pages = {477-491},
publisher = {Société mathématique de France},
title = {Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems},
url = {http://eudml.org/doc/87725},
volume = {123},
year = {1995},
}
TY - JOUR
AU - Mokkadem, Abdelkader
TI - Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 4
SP - 477
EP - 491
LA - eng
KW - nonlinear system; controllability; accessibility; discrete-time; algebraic sets; semi-diffeomorphism
UR - http://eudml.org/doc/87725
ER -
References
top- [1] BOCHNACK (J.), COSTE (M.) et ROY (M.F.). — Géométrie algébrique réelle. — Springer-Verlag, Berlin, 1987. Zbl0633.14016
- [2] BRÖCKER (Th.). — Differentiable Germs and Catastrophes. — Cambridge, 1975. Zbl0302.58006
- [3] HUREWICZ (W.) and WALLMAN (H.). — Dimension Theory. — Princeton, 1941. Zbl0060.39808MR3,312bJFM67.1092.03
- [4] JACKUBCZYCK (B.) and SONTAG (E.D.). — Controllability of Non-linear Discrete Time Systems: a Lie-algebraic approach, Siam J. Cont. Opt., t. 28, 1989, p. 1-33. Zbl0693.93009
- [5] KRENER (A.). — A Generalization of Chow's Theorem and the Bang-Bang Theorem to Non-Linear Control Systems, Siam J. Cont. Opt., t. 12, 1974, p. 43-52. Zbl0243.93008MR52 #4087
- [6] MOKKADEM (A.). — Orbites de Semi-groupes de Morphismes Réguliers et Systèmes Non Linéaires en Temps Discret, Forum Math., t. 1, 1989, p. 359-376. Zbl0682.93007MR90m:93015
- [7] NAGANO (T.). — Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, t. 18, 1966, p. 398-404. Zbl0147.23502MR33 #8005
- [8] SONTAG (E.D.). — Polynominal Response Maps. — Springer Verlag, Berlin-New York, 1979. Zbl0413.93004
- [9] SONTAG (E.D.). — Orbit Theorem and Sampling, in Algebraic and Geometric Methods in Nonlinear Control Theory. — M. Fliess and M. Hazewinkel, Eds., Dordrecht, 1986, p. 441-486. MR87i:93063
- [10] SUSSMANN (H.J.). — Orbit of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., t. 180, 1973, p. 171-188. Zbl0274.58002MR47 #9666
- [11] SUSSMANN (H.J.) and JURDJEVIC (V.). — Controllability of nonlinear systems, J. Differential Equations, t. 12, 1972, p. 95-116. Zbl0242.49040MR49 #3646
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.