Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems

Abdelkader Mokkadem

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 4, page 477-491
  • ISSN: 0037-9484

How to cite

top

Mokkadem, Abdelkader. "Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems." Bulletin de la Société Mathématique de France 123.4 (1995): 477-491. <http://eudml.org/doc/87725>.

@article{Mokkadem1995,
author = {Mokkadem, Abdelkader},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear system; controllability; accessibility; discrete-time; algebraic sets; semi-diffeomorphism},
language = {eng},
number = {4},
pages = {477-491},
publisher = {Société mathématique de France},
title = {Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems},
url = {http://eudml.org/doc/87725},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Mokkadem, Abdelkader
TI - Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 4
SP - 477
EP - 491
LA - eng
KW - nonlinear system; controllability; accessibility; discrete-time; algebraic sets; semi-diffeomorphism
UR - http://eudml.org/doc/87725
ER -

References

top
  1. [1] BOCHNACK (J.), COSTE (M.) et ROY (M.F.). — Géométrie algébrique réelle. — Springer-Verlag, Berlin, 1987. Zbl0633.14016
  2. [2] BRÖCKER (Th.). — Differentiable Germs and Catastrophes. — Cambridge, 1975. Zbl0302.58006
  3. [3] HUREWICZ (W.) and WALLMAN (H.). — Dimension Theory. — Princeton, 1941. Zbl0060.39808MR3,312bJFM67.1092.03
  4. [4] JACKUBCZYCK (B.) and SONTAG (E.D.). — Controllability of Non-linear Discrete Time Systems: a Lie-algebraic approach, Siam J. Cont. Opt., t. 28, 1989, p. 1-33. Zbl0693.93009
  5. [5] KRENER (A.). — A Generalization of Chow's Theorem and the Bang-Bang Theorem to Non-Linear Control Systems, Siam J. Cont. Opt., t. 12, 1974, p. 43-52. Zbl0243.93008MR52 #4087
  6. [6] MOKKADEM (A.). — Orbites de Semi-groupes de Morphismes Réguliers et Systèmes Non Linéaires en Temps Discret, Forum Math., t. 1, 1989, p. 359-376. Zbl0682.93007MR90m:93015
  7. [7] NAGANO (T.). — Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, t. 18, 1966, p. 398-404. Zbl0147.23502MR33 #8005
  8. [8] SONTAG (E.D.). — Polynominal Response Maps. — Springer Verlag, Berlin-New York, 1979. Zbl0413.93004
  9. [9] SONTAG (E.D.). — Orbit Theorem and Sampling, in Algebraic and Geometric Methods in Nonlinear Control Theory. — M. Fliess and M. Hazewinkel, Eds., Dordrecht, 1986, p. 441-486. MR87i:93063
  10. [10] SUSSMANN (H.J.). — Orbit of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., t. 180, 1973, p. 171-188. Zbl0274.58002MR47 #9666
  11. [11] SUSSMANN (H.J.) and JURDJEVIC (V.). — Controllability of nonlinear systems, J. Differential Equations, t. 12, 1972, p. 95-116. Zbl0242.49040MR49 #3646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.