Conditions quantitatives de rectifiabilité
Bulletin de la Société Mathématique de France (1997)
- Volume: 125, Issue: 1, page 15-53
- ISSN: 0037-9484
Access Full Article
topHow to cite
topPajot, Hervé. "Conditions quantitatives de rectifiabilité." Bulletin de la Société Mathématique de France 125.1 (1997): 15-53. <http://eudml.org/doc/87756>.
@article{Pajot1997,
author = {Pajot, Hervé},
journal = {Bulletin de la Société Mathématique de France},
keywords = {rectifiable set; Jones numbers; Hausdorff measure; Lipschitz map},
language = {fre},
number = {1},
pages = {15-53},
publisher = {Société mathématique de France},
title = {Conditions quantitatives de rectifiabilité},
url = {http://eudml.org/doc/87756},
volume = {125},
year = {1997},
}
TY - JOUR
AU - Pajot, Hervé
TI - Conditions quantitatives de rectifiabilité
JO - Bulletin de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 125
IS - 1
SP - 15
EP - 53
LA - fre
KW - rectifiable set; Jones numbers; Hausdorff measure; Lipschitz map
UR - http://eudml.org/doc/87756
ER -
References
top- [B1] BISHOP (C.J.). — Harmonic measure supported on curves, Thèse, Université de Chicago, 1987.
- [B2] BISHOP (C.J.). — Some conjectures concerning harmonic measure, dans Partial differential equations with minimal smoothness, IMA vol. in Math. and its Applications, Springer Verlag, t. 42, 1991. Zbl0792.30005
- [BJ] BISHOP (C.J.) and JONES (P.W.). — Harmonic measure, L2 estimates and the schwarzian derivatives, J. Analyse Math., t. 62, 1994, p. 77-113. Zbl0801.30024MR95f:30034
- [Da] DAVID (G.). — Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., Springer Verlag, t. 1465, 1991. Zbl0764.42019MR92k:42021
- [DS1] DAVID (G.) and SEMMES (S.). — Singular integrals and rectifiable sets in ℝn : au-delà des graphes lipschitziens, Astérisque, t. 193, 1991. Zbl0743.49018
- [DS2] DAVID (G.) and SEMMES (S.). — Analysis of and on uniformly rectifiable sets, Math. Surveys and Monographs, Amer. Math. Soc., t. 38, 1993. Zbl0832.42008MR94i:28003
- [Fa] FALCONER (K.J.). — Geometry of fractal sets. — Cambridge University Press, 1984. Zbl0587.28004
- [Fe] FEDERER (H.). — Geometric measure theory. — Springer Verlag, 1969. Zbl0176.00801MR41 #1976
- [Ga] GARNETT (J.). — Positive length but zero analytic capacity, Proc. Amer. Math. Soc., t. 24, 1970, p. 696-699. Zbl0208.09803MR43 #2203
- [J1] JONES (P.W.). — Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in Harmonic analysis and Partial differential equations, Lecture Notes in Math., Springer Verlag, t. 1384, 1989, p. 24-68. Zbl0675.30029MR91b:42032
- [J2] JONES (P.W.). — Rectifiable sets and the traveling salesman problem, Inventiones Math., t. 102, 1990, p. 1-15. Zbl0731.30018MR91i:26016
- [Ma] MATTILA (P.). — Geometry of sets and measures in euclidean spaces, Cambridge Studies in Advanced Math., Cambridge University Press, t. 44, 1995. Zbl0819.28004MR96h:28006
- [MMV] MATTILA (P.), MELNIKOV (M.) and VERDERA (J.). — The Cauchy integral, analytic capacity and uniform rectifiability, Annals of Math., t. 144, 1996, p. 127-136. Zbl0897.42007MR97k:31004
- [Ok] OKIKIOLU (K.). — Characterization of subsets of rectifiable curves in ℝn, J. London Math. Soc., t. 46, 1992, p. 336-348. Zbl0758.57020MR93m:28008
- [Pa] PAJOT (H.). — Théorème de recouvrement par des ensembles Ahlfors-réguliers et capacité analytique, C. R. Acad. Sci. Paris, t. 323, série I, 1996, p. 133-135. Zbl0863.30033MR97c:30034
- [St] STEIN (E.M.). — Singular integrals and differentiability properties of functions. — Princeton University Press, 1971. Zbl0207.13501
- [StZ] STEIN (E.M.) and ZYGMUND (A.). — On differentiability of functions, Studia Math., t. 23, 1964, p. 247-283. Zbl0122.30203MR28 #2176
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.