Conditions quantitatives de rectifiabilité

Hervé Pajot

Bulletin de la Société Mathématique de France (1997)

  • Volume: 125, Issue: 1, page 15-53
  • ISSN: 0037-9484

How to cite

top

Pajot, Hervé. "Conditions quantitatives de rectifiabilité." Bulletin de la Société Mathématique de France 125.1 (1997): 15-53. <http://eudml.org/doc/87756>.

@article{Pajot1997,
author = {Pajot, Hervé},
journal = {Bulletin de la Société Mathématique de France},
keywords = {rectifiable set; Jones numbers; Hausdorff measure; Lipschitz map},
language = {fre},
number = {1},
pages = {15-53},
publisher = {Société mathématique de France},
title = {Conditions quantitatives de rectifiabilité},
url = {http://eudml.org/doc/87756},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Pajot, Hervé
TI - Conditions quantitatives de rectifiabilité
JO - Bulletin de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 125
IS - 1
SP - 15
EP - 53
LA - fre
KW - rectifiable set; Jones numbers; Hausdorff measure; Lipschitz map
UR - http://eudml.org/doc/87756
ER -

References

top
  1. [B1] BISHOP (C.J.). — Harmonic measure supported on curves, Thèse, Université de Chicago, 1987. 
  2. [B2] BISHOP (C.J.). — Some conjectures concerning harmonic measure, dans Partial differential equations with minimal smoothness, IMA vol. in Math. and its Applications, Springer Verlag, t. 42, 1991. Zbl0792.30005
  3. [BJ] BISHOP (C.J.) and JONES (P.W.). — Harmonic measure, L2 estimates and the schwarzian derivatives, J. Analyse Math., t. 62, 1994, p. 77-113. Zbl0801.30024MR95f:30034
  4. [Da] DAVID (G.). — Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., Springer Verlag, t. 1465, 1991. Zbl0764.42019MR92k:42021
  5. [DS1] DAVID (G.) and SEMMES (S.). — Singular integrals and rectifiable sets in ℝn : au-delà des graphes lipschitziens, Astérisque, t. 193, 1991. Zbl0743.49018
  6. [DS2] DAVID (G.) and SEMMES (S.). — Analysis of and on uniformly rectifiable sets, Math. Surveys and Monographs, Amer. Math. Soc., t. 38, 1993. Zbl0832.42008MR94i:28003
  7. [Fa] FALCONER (K.J.). — Geometry of fractal sets. — Cambridge University Press, 1984. Zbl0587.28004
  8. [Fe] FEDERER (H.). — Geometric measure theory. — Springer Verlag, 1969. Zbl0176.00801MR41 #1976
  9. [Ga] GARNETT (J.). — Positive length but zero analytic capacity, Proc. Amer. Math. Soc., t. 24, 1970, p. 696-699. Zbl0208.09803MR43 #2203
  10. [J1] JONES (P.W.). — Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in Harmonic analysis and Partial differential equations, Lecture Notes in Math., Springer Verlag, t. 1384, 1989, p. 24-68. Zbl0675.30029MR91b:42032
  11. [J2] JONES (P.W.). — Rectifiable sets and the traveling salesman problem, Inventiones Math., t. 102, 1990, p. 1-15. Zbl0731.30018MR91i:26016
  12. [Ma] MATTILA (P.). — Geometry of sets and measures in euclidean spaces, Cambridge Studies in Advanced Math., Cambridge University Press, t. 44, 1995. Zbl0819.28004MR96h:28006
  13. [MMV] MATTILA (P.), MELNIKOV (M.) and VERDERA (J.). — The Cauchy integral, analytic capacity and uniform rectifiability, Annals of Math., t. 144, 1996, p. 127-136. Zbl0897.42007MR97k:31004
  14. [Ok] OKIKIOLU (K.). — Characterization of subsets of rectifiable curves in ℝn, J. London Math. Soc., t. 46, 1992, p. 336-348. Zbl0758.57020MR93m:28008
  15. [Pa] PAJOT (H.). — Théorème de recouvrement par des ensembles Ahlfors-réguliers et capacité analytique, C. R. Acad. Sci. Paris, t. 323, série I, 1996, p. 133-135. Zbl0863.30033MR97c:30034
  16. [St] STEIN (E.M.). — Singular integrals and differentiability properties of functions. — Princeton University Press, 1971. Zbl0207.13501
  17. [StZ] STEIN (E.M.) and ZYGMUND (A.). — On differentiability of functions, Studia Math., t. 23, 1964, p. 247-283. Zbl0122.30203MR28 #2176

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.