Sur le temps d'existence pour l'équation de Klein-Gordon semi-linéaire en dimension 1

Jean-Marc Delort

Bulletin de la Société Mathématique de France (1997)

  • Volume: 125, Issue: 2, page 269-311
  • ISSN: 0037-9484

How to cite

top

Delort, Jean-Marc. "Sur le temps d'existence pour l'équation de Klein-Gordon semi-linéaire en dimension 1." Bulletin de la Société Mathématique de France 125.2 (1997): 269-311. <http://eudml.org/doc/87765>.

@article{Delort1997,
author = {Delort, Jean-Marc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Kosecki type null condition; life-span time},
language = {fre},
number = {2},
pages = {269-311},
publisher = {Société mathématique de France},
title = {Sur le temps d'existence pour l'équation de Klein-Gordon semi-linéaire en dimension 1},
url = {http://eudml.org/doc/87765},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Delort, Jean-Marc
TI - Sur le temps d'existence pour l'équation de Klein-Gordon semi-linéaire en dimension 1
JO - Bulletin de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 125
IS - 2
SP - 269
EP - 311
LA - fre
KW - Kosecki type null condition; life-span time
UR - http://eudml.org/doc/87765
ER -

References

top
  1. [1] BONY (J.-M.). — Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles nonlinéaires, Ann. Sci. École Norm. Sup., t. 14, 1981, p. 209-256. Zbl0495.35024MR84h:35177
  2. [2] BONY (J.-M.). — Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (Katata/Kyoto, 1984). — Academic Press, Boston, 1986, p. 11-49. Zbl0669.35073MR89e:35099
  3. [3] BOURGAIN (J.). — Fourier transforms restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal., t. 3, 1993, p. 107-156, 202-262. Zbl0787.35097MR95d:35160a
  4. [4] FANG (Y.-F.) et GRILLAKIS (M.G.). — A priori estimates for the 2-d wave equation, Commun. Part. Diff. Eqs, t. 21, 1996, p. 1643-1665. Zbl0861.35053MR97f:35018
  5. [5] GEORGIEV (V.) et POPIVANOV (P.). — Global solutions to the two-dimensional Klein-Gordon equations, Commun. Part. Diff. Eqs, t. 16, 1991, p. 941-995. Zbl0741.35039MR92g:35140
  6. [6] HÖRMANDER (L.). — Non-linear Hyperbolic Differential Equations, Lectures Notes in Lund, preprint, 1986-1987. 
  7. [7] KENIG (C.), PONCE (G.) et VEGA (L.). — The Cauchy problem for the Korteweg-de-Vries equation on Sobolev spaces of negative indices, Duke Math. J., t. 71, 1993, p. 1-21. Zbl0787.35090MR94g:35196
  8. [8] KENIG (C.), PONCE (G.) et VEGA (L.). — A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., t. 9, 1996, p. 573-603. Zbl0848.35114MR96k:35159
  9. [9] KLAINERMAN (S.). — Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., t. 38, 1985, p. 631-641. Zbl0597.35100MR87e:35080
  10. [10] KLAINERMAN (S.) et MACHEDON (M.). — Smoothing estimates for null forms and applications, Duke Math. J., 1996, p. 99-131. Zbl0909.35094MR97h:35022
  11. [11] KOSECKI (R.). — The Unit Condition and Global Existence for a Class of Nonlinear Klein-Gordon Equations, Jour. Diff. Eq., t. 100, 1992, p. 257-268. Zbl0781.35062MR93k:35178
  12. [12] MORIYAMA (K.), TONEGAWA (S.) et TSUTSUMI (Y.). — Almost Global Existence of Solutions for the Quadratic Semilinear Klein-Gordon Equation in One Space Dimension, preprint, 1996. Zbl0925.35139
  13. [13] OZAWA (T.), TSUTAYA (K.) et TSUTSUMI (Y.). — Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., t. 222, 1996, p. 341-362. Zbl0877.35030MR97e:35112
  14. [14] SHATAH (J.). — Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., t. 38, 1985, p. 685-696. Zbl0597.35101MR87b:35160
  15. [15] SIMON (J.C.H.) et TAFLIN (E.). — The Cauchy problem for nonlinear Klein-Gordon equations, Commun. Math. Phys., t. 152, 1993, p. 433-478. Zbl0783.35066MR94d:35110
  16. [16] YORDANOV (B.). — Blow-up for the one-dimensional Klein-Gordon Equation with a cubic nonlinearity, preprint, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.