Un diviseur de zéro induisant un élément d'homotopie central
Bulletin de la Société Mathématique de France (1997)
- Volume: 125, Issue: 3, page 337-344
- ISSN: 0037-9484
Access Full Article
topHow to cite
topDupont, Nicolas. "Un diviseur de zéro induisant un élément d'homotopie central." Bulletin de la Société Mathématique de France 125.3 (1997): 337-344. <http://eudml.org/doc/87768>.
@article{Dupont1997,
	author = {Dupont, Nicolas},
	journal = {Bulletin de la Société Mathématique de France},
	keywords = {rational homotopy; local algebra},
	language = {fre},
	number = {3},
	pages = {337-344},
	publisher = {Société mathématique de France},
	title = {Un diviseur de zéro induisant un élément d'homotopie central},
	url = {http://eudml.org/doc/87768},
	volume = {125},
	year = {1997},
}
TY  - JOUR
AU  - Dupont, Nicolas
TI  - Un diviseur de zéro induisant un élément d'homotopie central
JO  - Bulletin de la Société Mathématique de France
PY  - 1997
PB  - Société mathématique de France
VL  - 125
IS  - 3
SP  - 337
EP  - 344
LA  - fre
KW  - rational homotopy; local algebra
UR  - http://eudml.org/doc/87768
ER  - 
References
top- [1] ANDRÉ (M.). — Hopf algebras with divided powers, J. Algebra, t. 18, 1971, p. 19-50. Zbl0217.07102MR43 #3323
- [2] ANDRÉ (M.). — Le caractère additif des déviations des anneaux locaux, Comment. Math. Helvetici, t. 57, 1982, p. 648-675. Zbl0509.13007MR85a:14006
- [3] AVRAMOV (L.L.). — Homological asymtotics of modules over local rings, Commutative algebra, Proceedings of a microprogram held June 15-July 2, ed. M. Hochters, C. Huneke and J.D. Sally, Springer-Verlag, 1989, p. 33-62. Zbl0788.18010MR90i:13014
- [4] AVRAMOV (L.L.). — Local algebra and rational homotopy, Homotopie algébrique et algèbre locale, journées S.M.F., éd. J.-M. Lemaire et J.-C. Thomas, Astérisque 113-114, Société Mathématique de France, 1984, p. 15-43. Zbl0552.13003MR85j:55021
- [5] HALPERIN (S.). — The non-vanishing of the deviations of a local ring, Comment. Math. Helvetici, t. 62, 1987, p. 646-653. Zbl0639.13011MR89d:13015
- [6] HALPERIN (S.) and STASHEFF (J.). — Obstructions to homotopy equivalences, Adv. in Math., t. 32, 1979, p. 233-279. Zbl0408.55009MR80j:55016
- [7] LEVIN (G.). — Homology of local rings, Ph.D. Thesis, Univ. of Chicago, 1965.
- [8] LÖFWALL (C.). — Central elements and deformations of local rings, J. Pure and Applied Algebra, t. 91, 1994, p. 183-192. Zbl0798.55009MR95g:13018
- [9] MILNOR (J.) and MOORE (J.C.). — On the structure of Hopf algebras, Annals Math., t. 81, 1965, p. 211-264. Zbl0163.28202MR30 #4259
- [10] SJÖDIN (G.). — Hopf algebras and derivations, J. Algebra, t. 64, 1980, p. 218-229. Zbl0429.16008MR84a:16016
- [11] TATE (J.). — Homology of noetherian rings and local rings, Illinois J. Math., t. 1, 1957, p. 14-27. Zbl0079.05501MR19,119b
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 