Un diviseur de zéro induisant un élément d'homotopie central

Nicolas Dupont

Bulletin de la Société Mathématique de France (1997)

  • Volume: 125, Issue: 3, page 337-344
  • ISSN: 0037-9484

How to cite

top

Dupont, Nicolas. "Un diviseur de zéro induisant un élément d'homotopie central." Bulletin de la Société Mathématique de France 125.3 (1997): 337-344. <http://eudml.org/doc/87768>.

@article{Dupont1997,
author = {Dupont, Nicolas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {rational homotopy; local algebra},
language = {fre},
number = {3},
pages = {337-344},
publisher = {Société mathématique de France},
title = {Un diviseur de zéro induisant un élément d'homotopie central},
url = {http://eudml.org/doc/87768},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Dupont, Nicolas
TI - Un diviseur de zéro induisant un élément d'homotopie central
JO - Bulletin de la Société Mathématique de France
PY - 1997
PB - Société mathématique de France
VL - 125
IS - 3
SP - 337
EP - 344
LA - fre
KW - rational homotopy; local algebra
UR - http://eudml.org/doc/87768
ER -

References

top
  1. [1] ANDRÉ (M.). — Hopf algebras with divided powers, J. Algebra, t. 18, 1971, p. 19-50. Zbl0217.07102MR43 #3323
  2. [2] ANDRÉ (M.). — Le caractère additif des déviations des anneaux locaux, Comment. Math. Helvetici, t. 57, 1982, p. 648-675. Zbl0509.13007MR85a:14006
  3. [3] AVRAMOV (L.L.). — Homological asymtotics of modules over local rings, Commutative algebra, Proceedings of a microprogram held June 15-July 2, ed. M. Hochters, C. Huneke and J.D. Sally, Springer-Verlag, 1989, p. 33-62. Zbl0788.18010MR90i:13014
  4. [4] AVRAMOV (L.L.). — Local algebra and rational homotopy, Homotopie algébrique et algèbre locale, journées S.M.F., éd. J.-M. Lemaire et J.-C. Thomas, Astérisque 113-114, Société Mathématique de France, 1984, p. 15-43. Zbl0552.13003MR85j:55021
  5. [5] HALPERIN (S.). — The non-vanishing of the deviations of a local ring, Comment. Math. Helvetici, t. 62, 1987, p. 646-653. Zbl0639.13011MR89d:13015
  6. [6] HALPERIN (S.) and STASHEFF (J.). — Obstructions to homotopy equivalences, Adv. in Math., t. 32, 1979, p. 233-279. Zbl0408.55009MR80j:55016
  7. [7] LEVIN (G.). — Homology of local rings, Ph.D. Thesis, Univ. of Chicago, 1965. 
  8. [8] LÖFWALL (C.). — Central elements and deformations of local rings, J. Pure and Applied Algebra, t. 91, 1994, p. 183-192. Zbl0798.55009MR95g:13018
  9. [9] MILNOR (J.) and MOORE (J.C.). — On the structure of Hopf algebras, Annals Math., t. 81, 1965, p. 211-264. Zbl0163.28202MR30 #4259
  10. [10] SJÖDIN (G.). — Hopf algebras and derivations, J. Algebra, t. 64, 1980, p. 218-229. Zbl0429.16008MR84a:16016
  11. [11] TATE (J.). — Homology of noetherian rings and local rings, Illinois J. Math., t. 1, 1957, p. 14-27. Zbl0079.05501MR19,119b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.