Ergodicité intrinsèque de produits fibrés d'applications chaotiques unidimensionnelles

Jérôme Buzzi

Bulletin de la Société Mathématique de France (1998)

  • Volume: 126, Issue: 1, page 51-77
  • ISSN: 0037-9484

How to cite

top

Buzzi, Jérôme. "Ergodicité intrinsèque de produits fibrés d'applications chaotiques unidimensionnelles." Bulletin de la Société Mathématique de France 126.1 (1998): 51-77. <http://eudml.org/doc/87780>.

@article{Buzzi1998,
author = {Buzzi, Jérôme},
journal = {Bulletin de la Société Mathématique de France},
keywords = {ergodic theory; metric entropy; topological entropy; intrinsic ergodicity; topological Markov chains; Markov diagram; Hofbauer diagram; non-expanding; ergodic probability measure with maximal entropy},
language = {fre},
number = {1},
pages = {51-77},
publisher = {Société mathématique de France},
title = {Ergodicité intrinsèque de produits fibrés d'applications chaotiques unidimensionnelles},
url = {http://eudml.org/doc/87780},
volume = {126},
year = {1998},
}

TY - JOUR
AU - Buzzi, Jérôme
TI - Ergodicité intrinsèque de produits fibrés d'applications chaotiques unidimensionnelles
JO - Bulletin de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 126
IS - 1
SP - 51
EP - 77
LA - fre
KW - ergodic theory; metric entropy; topological entropy; intrinsic ergodicity; topological Markov chains; Markov diagram; Hofbauer diagram; non-expanding; ergodic probability measure with maximal entropy
UR - http://eudml.org/doc/87780
ER -

References

top
  1. [1] BOWEN (R.). — Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., t. 153, 1971, p. 401-414. Zbl0212.29201MR43 #469
  2. [2] BUZZI (J.). — Entropies et représentation markovienne des applications régulières de l'intervalle. — Thèse, Université Paris-Sud, Orsay, 1995. 
  3. [3] BUZZI (J.). — Intrinsic Ergodicity of Smooth Interval Maps, Israel J. Math., t. 100, 1997, p. 125-161. Zbl0889.28009MR99g:58071
  4. [4] BUZZI (J.). — Intrinsic Ergodicity of Affine Maps on [0, 1]d, Monat. Math., t. 124, 1997, p. 97-118. Zbl0886.58024MR98g:58098
  5. [5] BUZZI (J.). — Entropy, volume growth and Lyapunov exponents, submitted. 
  6. [6] BUZZI (J.). — Markov extensions for multi-dimensional dynamical systems, submitted. Zbl0988.37012
  7. [7] COSTE (M.). — Ensembles semi-algébriques, Lecture Notes in Mathematics, n° 959, Springer-Verlag, Berlin, 1982, p. 109-138. Zbl0498.14012MR84e:14023
  8. [8] DENKER (M.), GRILLENBERG (C.), SIGMUND (K.). — Ergodic theory on compact spaces, Lecture Notes in Mathematics n° 527, Springer-Verlag, 1976. Zbl0328.28008MR56 #15879
  9. [9] GROMOV (M.). — Entropy, homology and semi-algebraic geometry, Séminaire Bourbaki, t. 663, 1985-1986. Zbl0611.58041
  10. [10] GUREVIČ (B.M.). — Topological entropy of enumerable Markov chains, Soviet Math. Dokl., t. 10, 1969, p. 911-915. Zbl0194.49602
  11. [11] GUREVIČ (B.M.). — Shift entropy and Markov measures in the path space of a denumerable graph, Soviet Math. Dokl., t. 11, 1970, p. 744-747. Zbl0217.38101
  12. [12] HIRSCH (M.W.), PUGH (C.C.), SHUB (M.). — Invariant Manifolds, Lecture Notes in Mathematics n° 583, Springer-Verlag, Berlin, 1977. Zbl0355.58009MR58 #18595
  13. [13] HOFBAUER (F.). — On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math., t. I, 34, 1979, p. 213-237; t. II, 38, 1981, p. 107-115. Zbl0422.28015
  14. [14] KATOK (A.). — Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S., t. 51, 1980, p. 137-173. Zbl0445.58015MR81i:28022
  15. [15] KELLER (G.). — Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc, t. 314, 1989, p. 433-497. Zbl0686.58027MR91c:58062
  16. [16] KELLER (G.). — Lifting measures to Markov extensions, Mh. Math., t. 108, 1989, p. 183-200. Zbl0712.28008MR91b:28011
  17. [17] LEDRAPPIER (F.), WALTERS (P.). — A relativised variational principle for continuous transformations, J. London Math. Soc., t. 16, 1977, p. 568-576. Zbl0388.28020MR57 #16540
  18. [18] MISIUREWICZ (M.). — Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci., Ser. Sci. Math., t. 27, 1979, p. 167-169. Zbl0459.54031MR81b:58033
  19. [19] MISIUREWICZ (M.), SZLENK (W.). — Entropy of piecewise monotone mappings, Studia Math., t. 67, p. 45-63. Zbl0445.54007MR82a:58030
  20. [20] NEWHOUSE (S.E.). — Continuity properties of the entropy, Ann. Math., t. 129, 1989, p. 215-237. Zbl0676.58039MR90f:58108
  21. [21] WEISS (B.). — Intrinsically ergodic systems, Bull. Amer. Math. Soc., t. 76, 1970, p. 1266-1269. Zbl0218.28011MR42 #1978
  22. [22] YOMDIN (Y.). — Volume growth and entropy, Israel J. Math., t. 57, 1987, p. 285-300. Zbl0641.54036MR90g:58008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.