Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps

Jérôme Buzzi[1]

  • [1] Université Paris-Sud Laboratoire de Mathématique d’Orsay Bât 425 91405 Orsay cedex (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 3, page 801-852
  • ISSN: 0373-0956

Abstract

top
Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably positively recurrent» countable graph. More precisely, we introduce an «entropy at infinity» for such graphs, bounded by the constraint entropy of the puzzle. This allows the generalization of classical properties of subshifts of finite type: finite multiplicity of maximal entropy measures, almost topological classification, meromorphic extension of Artin-Mazur zeta functions counting periodic points.These results are finally applied to puzzles and non-degenerate entropy-expanding maps.

How to cite

top

Buzzi, Jérôme. "Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps." Annales de l’institut Fourier 60.3 (2010): 801-852. <http://eudml.org/doc/116293>.

@article{Buzzi2010,
abstract = {Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably positively recurrent» countable graph. More precisely, we introduce an «entropy at infinity» for such graphs, bounded by the constraint entropy of the puzzle. This allows the generalization of classical properties of subshifts of finite type: finite multiplicity of maximal entropy measures, almost topological classification, meromorphic extension of Artin-Mazur zeta functions counting periodic points.These results are finally applied to puzzles and non-degenerate entropy-expanding maps.},
affiliation = {Université Paris-Sud Laboratoire de Mathématique d’Orsay Bât 425 91405 Orsay cedex (France)},
author = {Buzzi, Jérôme},
journal = {Annales de l’institut Fourier},
keywords = {Symbolic dynamics; topological dynamics; ergodic theory; entropy; measures of maximal entropy; periodic points; Artin-Mazur zeta function; puzzle; non-uniform hyperbolicity; entropy-expanding transformations; countable state topological Markov chains; stable positive recurrence; meromorphic extensions; entropy-conjugacy; complexity; symbolic dynamics},
language = {eng},
number = {3},
pages = {801-852},
publisher = {Association des Annales de l’institut Fourier},
title = {Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps},
url = {http://eudml.org/doc/116293},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Buzzi, Jérôme
TI - Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 801
EP - 852
AB - Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably positively recurrent» countable graph. More precisely, we introduce an «entropy at infinity» for such graphs, bounded by the constraint entropy of the puzzle. This allows the generalization of classical properties of subshifts of finite type: finite multiplicity of maximal entropy measures, almost topological classification, meromorphic extension of Artin-Mazur zeta functions counting periodic points.These results are finally applied to puzzles and non-degenerate entropy-expanding maps.
LA - eng
KW - Symbolic dynamics; topological dynamics; ergodic theory; entropy; measures of maximal entropy; periodic points; Artin-Mazur zeta function; puzzle; non-uniform hyperbolicity; entropy-expanding transformations; countable state topological Markov chains; stable positive recurrence; meromorphic extensions; entropy-conjugacy; complexity; symbolic dynamics
UR - http://eudml.org/doc/116293
ER -

References

top
  1. V. Berthé, Sequences of low complexity: automatic and Sturmian sequences, Topics in symbolic dynamics and applications (Temuco, 1997) 279 (2000), Cambridge Univ. Press, Cambridge Zbl0976.11014MR1776754
  2. L. Block, J. Guckenheimer, M. Misiurewicz, L.-S. Young, Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems 819 (1980), 18-34, Springer, Berlin Zbl0447.58028MR591173
  3. R. Bowen, Topological entropy for noncompact sets, Trans. A.M.S. 184 (1975), 125-136 Zbl0274.54030MR338317
  4. M. Boyle, J. Buzzi, R. Gomez, Almost isomorphism of countable state Markov shifts, Journal fur die reine und angewandte Mathematik 592 (2006), 23-47 Zbl1094.37006MR2222728
  5. B. Branner, J. H. Hubbard, The iteration of cubic polynomials, Part II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325 Zbl0812.30008MR1194004
  6. J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161 Zbl0889.28009MR1469107
  7. J. Buzzi, Ergodicité intrinsèque de produits fibrés d’applications chaotiques unidimensionelles, Bull. Soc. Math. France 126 (1998), 51-77 Zbl0917.58018MR1651381
  8. J. Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357-380 Zbl0988.37012MR1714974
  9. J. Buzzi, On entropy-expanding maps, (2000) Zbl0973.37003
  10. J. Buzzi, The coding of non-uniformly expanding maps with an application to endomorphisms of C P k , Ergodic Th. and Dynam. Syst. 23 (2003), 1015-1024 Zbl1048.37025MR1997965
  11. J. Buzzi, Subshifts of quasi-finite type, Invent. Math. 159 (2005), 369-406 Zbl1256.37003MR2116278
  12. J. Buzzi, S. Ruette, Large entropy implies existence of a maximal entropy measure for interval maps, Discrete Contin. Dyn. Syst. 14 (2006), 673-688 Zbl1092.37022MR2177091
  13. W de Melo, S. van Strien, One-dimensional dynamics, 25 (1993), Springer-Verlag, Berlin Zbl0791.58003MR1239171
  14. D. Fiebig, U.-R. Fiebig, M. Yuri, Pressure and equilibrium states for countable state Markov shifts, Israel J. Math. 131 (2002), 221-257 Zbl1026.37020MR1942310
  15. B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715-718 Zbl0194.49602MR263162
  16. B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963-965 Zbl0217.38101MR268356
  17. B. M. Gurevič, Stably recurrent nonnegative matrices, Uspekhi Mat. Nauk 51 (1996), 195-196 Zbl0874.15017MR1406062
  18. B. M. Gurevič, S. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Uspekhi Mat. Nauk 53 (1998), 3-106 Zbl0926.37009MR1639451
  19. B. M. Gurevič, A. S. Zargaryan, Conditions for the existence of a maximal measure for a countable symbolic Markov chain, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 103 (1988), 14-18 Zbl0657.60093MR1051173
  20. F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237 Zbl0422.28015MR570882
  21. F. Hofbauer, G. Keller, Zeta-functions and transfer-operators for piecewise linear transformations, J. Reine Angew. Math. 352 (1984), 100-113 Zbl0533.28011MR758696
  22. Sh. Ito, H. Murata, H. Totoki, Remarks on the isomorphism theorem for weak Bernoulli transformations in the general case, Publ. Res. Inst. Math. Sci. 7 (1971/1972), 541-580 Zbl0246.28012MR310195
  23. V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys. 211 (2000), 253-271 Zbl0956.37017MR1757015
  24. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Etudes Sci. Publ. Math. (1980), 137-173 Zbl0445.58015MR573822
  25. B. P. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, (1998), Springer, Berlin Zbl0892.58020MR1484730
  26. D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
  27. R. D. Mauldin, M. Urbański, Graph directed Markov systems. Geometry and dynamics of limit sets, 148 (2003), Cambridge University Press, Cambridge Zbl1033.37025MR2003772
  28. C. T. McMullen, Complex dynamics and renormalization, 135 (1994), Princeton University Press, Princeton, NJ Zbl0822.30002MR1312365
  29. J. Milnor, W. Thurston, On iterated maps of the interval, Dynamical Systems 1342 (1988), 465-564, Springer Zbl0664.58015MR970571
  30. M. Misiurewicz, Topological conditional entropy, Studia Math. 55 (1976), 175-200 Zbl0355.54035MR415587
  31. M. J. Pacifico, J. Vieitez, Entropy-expansiveness and domination, (2006) Zbl1201.37035
  32. R. Remmert, L. Kay, Classical Topics in Complex Function Theory, (1998), Springer Zbl0895.30001MR1483074
  33. S. Ruette, Mixing C r maps of the interval without maximal measure, Israel J. Math. 127 (2002), 253-277 Zbl1187.37057MR1900702
  34. S. Ruette, On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains, Pacific J. Math. 209 (2003), 366-380 Zbl1055.37020MR1978377
  35. O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems 19 (1999), 1565-1593 Zbl0994.37005MR1738951
  36. O. Sarig, Phase Transitions for Countable Topological Markov Shifts, Commun. Math. Phys. 217 (2001), 555-577 Zbl1007.37018MR1822107
  37. O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121 (2001), 285-311 Zbl0992.37025MR1818392
  38. M. Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Etudes Sci. Publ. Math. 85 (1997), 63-96 Zbl1037.37016MR1471866
  39. P. Walters, An introduction to ergodic theory, 79 (1982), Springer-Verlag, New-York Berlin Zbl0475.28009MR648108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.