Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps
Jérôme Buzzi[1]
- [1] Université Paris-Sud Laboratoire de Mathématique d’Orsay Bât 425 91405 Orsay cedex (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 3, page 801-852
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. Berthé, Sequences of low complexity: automatic and Sturmian sequences, Topics in symbolic dynamics and applications (Temuco, 1997) 279 (2000), Cambridge Univ. Press, Cambridge Zbl0976.11014MR1776754
- L. Block, J. Guckenheimer, M. Misiurewicz, L.-S. Young, Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems 819 (1980), 18-34, Springer, Berlin Zbl0447.58028MR591173
- R. Bowen, Topological entropy for noncompact sets, Trans. A.M.S. 184 (1975), 125-136 Zbl0274.54030MR338317
- M. Boyle, J. Buzzi, R. Gomez, Almost isomorphism of countable state Markov shifts, Journal fur die reine und angewandte Mathematik 592 (2006), 23-47 Zbl1094.37006MR2222728
- B. Branner, J. H. Hubbard, The iteration of cubic polynomials, Part II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325 Zbl0812.30008MR1194004
- J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161 Zbl0889.28009MR1469107
- J. Buzzi, Ergodicité intrinsèque de produits fibrés d’applications chaotiques unidimensionelles, Bull. Soc. Math. France 126 (1998), 51-77 Zbl0917.58018MR1651381
- J. Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357-380 Zbl0988.37012MR1714974
- J. Buzzi, On entropy-expanding maps, (2000) Zbl0973.37003
- J. Buzzi, The coding of non-uniformly expanding maps with an application to endomorphisms of , Ergodic Th. and Dynam. Syst. 23 (2003), 1015-1024 Zbl1048.37025MR1997965
- J. Buzzi, Subshifts of quasi-finite type, Invent. Math. 159 (2005), 369-406 Zbl1256.37003MR2116278
- J. Buzzi, S. Ruette, Large entropy implies existence of a maximal entropy measure for interval maps, Discrete Contin. Dyn. Syst. 14 (2006), 673-688 Zbl1092.37022MR2177091
- W de Melo, S. van Strien, One-dimensional dynamics, 25 (1993), Springer-Verlag, Berlin Zbl0791.58003MR1239171
- D. Fiebig, U.-R. Fiebig, M. Yuri, Pressure and equilibrium states for countable state Markov shifts, Israel J. Math. 131 (2002), 221-257 Zbl1026.37020MR1942310
- B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715-718 Zbl0194.49602MR263162
- B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963-965 Zbl0217.38101MR268356
- B. M. Gurevič, Stably recurrent nonnegative matrices, Uspekhi Mat. Nauk 51 (1996), 195-196 Zbl0874.15017MR1406062
- B. M. Gurevič, S. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Uspekhi Mat. Nauk 53 (1998), 3-106 Zbl0926.37009MR1639451
- B. M. Gurevič, A. S. Zargaryan, Conditions for the existence of a maximal measure for a countable symbolic Markov chain, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 103 (1988), 14-18 Zbl0657.60093MR1051173
- F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237 Zbl0422.28015MR570882
- F. Hofbauer, G. Keller, Zeta-functions and transfer-operators for piecewise linear transformations, J. Reine Angew. Math. 352 (1984), 100-113 Zbl0533.28011MR758696
- Sh. Ito, H. Murata, H. Totoki, Remarks on the isomorphism theorem for weak Bernoulli transformations in the general case, Publ. Res. Inst. Math. Sci. 7 (1971/1972), 541-580 Zbl0246.28012MR310195
- V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys. 211 (2000), 253-271 Zbl0956.37017MR1757015
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Etudes Sci. Publ. Math. (1980), 137-173 Zbl0445.58015MR573822
- B. P. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, (1998), Springer, Berlin Zbl0892.58020MR1484730
- D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
- R. D. Mauldin, M. Urbański, Graph directed Markov systems. Geometry and dynamics of limit sets, 148 (2003), Cambridge University Press, Cambridge Zbl1033.37025MR2003772
- C. T. McMullen, Complex dynamics and renormalization, 135 (1994), Princeton University Press, Princeton, NJ Zbl0822.30002MR1312365
- J. Milnor, W. Thurston, On iterated maps of the interval, Dynamical Systems 1342 (1988), 465-564, Springer Zbl0664.58015MR970571
- M. Misiurewicz, Topological conditional entropy, Studia Math. 55 (1976), 175-200 Zbl0355.54035MR415587
- M. J. Pacifico, J. Vieitez, Entropy-expansiveness and domination, (2006) Zbl1201.37035
- R. Remmert, L. Kay, Classical Topics in Complex Function Theory, (1998), Springer Zbl0895.30001MR1483074
- S. Ruette, Mixing maps of the interval without maximal measure, Israel J. Math. 127 (2002), 253-277 Zbl1187.37057MR1900702
- S. Ruette, On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains, Pacific J. Math. 209 (2003), 366-380 Zbl1055.37020MR1978377
- O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems 19 (1999), 1565-1593 Zbl0994.37005MR1738951
- O. Sarig, Phase Transitions for Countable Topological Markov Shifts, Commun. Math. Phys. 217 (2001), 555-577 Zbl1007.37018MR1822107
- O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121 (2001), 285-311 Zbl0992.37025MR1818392
- M. Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Etudes Sci. Publ. Math. 85 (1997), 63-96 Zbl1037.37016MR1471866
- P. Walters, An introduction to ergodic theory, 79 (1982), Springer-Verlag, New-York Berlin Zbl0475.28009MR648108