Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps
Jérôme Buzzi[1]
- [1] Université Paris-Sud Laboratoire de Mathématique d’Orsay Bât 425 91405 Orsay cedex (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 3, page 801-852
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBuzzi, Jérôme. "Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps." Annales de l’institut Fourier 60.3 (2010): 801-852. <http://eudml.org/doc/116293>.
@article{Buzzi2010,
abstract = {Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably positively recurrent» countable graph. More precisely, we introduce an «entropy at infinity» for such graphs, bounded by the constraint entropy of the puzzle. This allows the generalization of classical properties of subshifts of finite type: finite multiplicity of maximal entropy measures, almost topological classification, meromorphic extension of Artin-Mazur zeta functions counting periodic points.These results are finally applied to puzzles and non-degenerate entropy-expanding maps.},
affiliation = {Université Paris-Sud Laboratoire de Mathématique d’Orsay Bât 425 91405 Orsay cedex (France)},
author = {Buzzi, Jérôme},
journal = {Annales de l’institut Fourier},
keywords = {Symbolic dynamics; topological dynamics; ergodic theory; entropy; measures of maximal entropy; periodic points; Artin-Mazur zeta function; puzzle; non-uniform hyperbolicity; entropy-expanding transformations; countable state topological Markov chains; stable positive recurrence; meromorphic extensions; entropy-conjugacy; complexity; symbolic dynamics},
language = {eng},
number = {3},
pages = {801-852},
publisher = {Association des Annales de l’institut Fourier},
title = {Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps},
url = {http://eudml.org/doc/116293},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Buzzi, Jérôme
TI - Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 3
SP - 801
EP - 852
AB - Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably positively recurrent» countable graph. More precisely, we introduce an «entropy at infinity» for such graphs, bounded by the constraint entropy of the puzzle. This allows the generalization of classical properties of subshifts of finite type: finite multiplicity of maximal entropy measures, almost topological classification, meromorphic extension of Artin-Mazur zeta functions counting periodic points.These results are finally applied to puzzles and non-degenerate entropy-expanding maps.
LA - eng
KW - Symbolic dynamics; topological dynamics; ergodic theory; entropy; measures of maximal entropy; periodic points; Artin-Mazur zeta function; puzzle; non-uniform hyperbolicity; entropy-expanding transformations; countable state topological Markov chains; stable positive recurrence; meromorphic extensions; entropy-conjugacy; complexity; symbolic dynamics
UR - http://eudml.org/doc/116293
ER -
References
top- V. Berthé, Sequences of low complexity: automatic and Sturmian sequences, Topics in symbolic dynamics and applications (Temuco, 1997) 279 (2000), Cambridge Univ. Press, Cambridge Zbl0976.11014MR1776754
- L. Block, J. Guckenheimer, M. Misiurewicz, L.-S. Young, Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems 819 (1980), 18-34, Springer, Berlin Zbl0447.58028MR591173
- R. Bowen, Topological entropy for noncompact sets, Trans. A.M.S. 184 (1975), 125-136 Zbl0274.54030MR338317
- M. Boyle, J. Buzzi, R. Gomez, Almost isomorphism of countable state Markov shifts, Journal fur die reine und angewandte Mathematik 592 (2006), 23-47 Zbl1094.37006MR2222728
- B. Branner, J. H. Hubbard, The iteration of cubic polynomials, Part II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325 Zbl0812.30008MR1194004
- J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161 Zbl0889.28009MR1469107
- J. Buzzi, Ergodicité intrinsèque de produits fibrés d’applications chaotiques unidimensionelles, Bull. Soc. Math. France 126 (1998), 51-77 Zbl0917.58018MR1651381
- J. Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357-380 Zbl0988.37012MR1714974
- J. Buzzi, On entropy-expanding maps, (2000) Zbl0973.37003
- J. Buzzi, The coding of non-uniformly expanding maps with an application to endomorphisms of , Ergodic Th. and Dynam. Syst. 23 (2003), 1015-1024 Zbl1048.37025MR1997965
- J. Buzzi, Subshifts of quasi-finite type, Invent. Math. 159 (2005), 369-406 Zbl1256.37003MR2116278
- J. Buzzi, S. Ruette, Large entropy implies existence of a maximal entropy measure for interval maps, Discrete Contin. Dyn. Syst. 14 (2006), 673-688 Zbl1092.37022MR2177091
- W de Melo, S. van Strien, One-dimensional dynamics, 25 (1993), Springer-Verlag, Berlin Zbl0791.58003MR1239171
- D. Fiebig, U.-R. Fiebig, M. Yuri, Pressure and equilibrium states for countable state Markov shifts, Israel J. Math. 131 (2002), 221-257 Zbl1026.37020MR1942310
- B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715-718 Zbl0194.49602MR263162
- B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963-965 Zbl0217.38101MR268356
- B. M. Gurevič, Stably recurrent nonnegative matrices, Uspekhi Mat. Nauk 51 (1996), 195-196 Zbl0874.15017MR1406062
- B. M. Gurevič, S. Savchenko, Thermodynamic formalism for symbolic Markov chains with a countable number of states, Uspekhi Mat. Nauk 53 (1998), 3-106 Zbl0926.37009MR1639451
- B. M. Gurevič, A. S. Zargaryan, Conditions for the existence of a maximal measure for a countable symbolic Markov chain, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 103 (1988), 14-18 Zbl0657.60093MR1051173
- F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237 Zbl0422.28015MR570882
- F. Hofbauer, G. Keller, Zeta-functions and transfer-operators for piecewise linear transformations, J. Reine Angew. Math. 352 (1984), 100-113 Zbl0533.28011MR758696
- Sh. Ito, H. Murata, H. Totoki, Remarks on the isomorphism theorem for weak Bernoulli transformations in the general case, Publ. Res. Inst. Math. Sci. 7 (1971/1972), 541-580 Zbl0246.28012MR310195
- V. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys. 211 (2000), 253-271 Zbl0956.37017MR1757015
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Etudes Sci. Publ. Math. (1980), 137-173 Zbl0445.58015MR573822
- B. P. Kitchens, Symbolic dynamics. One-sided, two-sided and countable state Markov shifts, (1998), Springer, Berlin Zbl0892.58020MR1484730
- D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
- R. D. Mauldin, M. Urbański, Graph directed Markov systems. Geometry and dynamics of limit sets, 148 (2003), Cambridge University Press, Cambridge Zbl1033.37025MR2003772
- C. T. McMullen, Complex dynamics and renormalization, 135 (1994), Princeton University Press, Princeton, NJ Zbl0822.30002MR1312365
- J. Milnor, W. Thurston, On iterated maps of the interval, Dynamical Systems 1342 (1988), 465-564, Springer Zbl0664.58015MR970571
- M. Misiurewicz, Topological conditional entropy, Studia Math. 55 (1976), 175-200 Zbl0355.54035MR415587
- M. J. Pacifico, J. Vieitez, Entropy-expansiveness and domination, (2006) Zbl1201.37035
- R. Remmert, L. Kay, Classical Topics in Complex Function Theory, (1998), Springer Zbl0895.30001MR1483074
- S. Ruette, Mixing maps of the interval without maximal measure, Israel J. Math. 127 (2002), 253-277 Zbl1187.37057MR1900702
- S. Ruette, On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains, Pacific J. Math. 209 (2003), 366-380 Zbl1055.37020MR1978377
- O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems 19 (1999), 1565-1593 Zbl0994.37005MR1738951
- O. Sarig, Phase Transitions for Countable Topological Markov Shifts, Commun. Math. Phys. 217 (2001), 555-577 Zbl1007.37018MR1822107
- O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121 (2001), 285-311 Zbl0992.37025MR1818392
- M. Viana, Multidimensional nonhyperbolic attractors, Inst. Hautes Etudes Sci. Publ. Math. 85 (1997), 63-96 Zbl1037.37016MR1471866
- P. Walters, An introduction to ergodic theory, 79 (1982), Springer-Verlag, New-York Berlin Zbl0475.28009MR648108
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.